State-Space Model Representation to Characterize an Energy Harvesting Circuit

Regis Rousseau* (1), Guillaume Villemaud (1), and Florin Hutu (1)


Extended Abstract

For several years now, research has been undertaken to improve the DC harvested power of energy harvesting circuits and the use of multi-tone signals has shown increased performance. In the case of power transfer, [1] has thus shown that the use of power-optimized waveform (POW) considerably affects the efficiency of the rectifier. With an optimal range of the sub-carrier spacing, the voltage ripple and the total number of sub-carriers, a relationship has been established in order to maximize the efficiency of a single-shunt rectenna.

The current trend is now to take into account the transmission channel. The radio-frequency source (multi-sine), the canal and the rectenna are considered as a global wireless power transfer (WPT) system. [2] described the influence of a realistic channel on the overall efficiency. For a static multi-path channel, the efficiency can quickly decrease in the case of an important frequency-selective channel with large signal bandwidth. Waveform adaptation algorithms according to the characteristics of the channel have thus been developed [3] and verified experimentally [4].

This extended abstract describes an original solution to maximize the DC power harvested in a WPT scenario. Figure 1 shows the principle which is in the use of state-space models to represent the elements of the global WPT system. Three main aspects of a WPT system are taken into account: the RF multi-sine source, the propagation channel and the rectifier. Each of its elements find their representation by a state-space model matrix and the algorithm optimization will become a convex optimization resolution. Different works have been already realized in the use of vector-fitting to model the linear parts of the rectifier [5]. These results are the first step of the state-space model of a global WPT system. The future works target the state-space model of the multi-path propagation channel (MOESP method) and the state-space model of the non-linear part of the rectifier (Nodal DK method). Thus a validation could be carried out in order to verify that a rectifier modeled in the form of a state-space matrix gives the same results as this same rectifier simulated using a circuit-system tool (ADS).

Figure 1. A WPT system model. The propagation channel and the rectifying circuit are modeled by their respective state-space models.

References


