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Abstract 
 
The inverse problem is considered of reconstructing real 
permittivity of a plane-parallel layer in a perfectly 
conducting rectangular waveguide from experimental data 
using explicit expression for the scattering matrix. This 
problem is incorrect because of the presence of 
self-intersection points on the scattering coefficients 
curves on the complex plane. It is shown that the traditional 
multi-frequency method of measurements applied in vector 
network analyzers can be justified using the fact that the 
algorithm for processing the measurement results that 
employs least squares becomes stable if the number of 
frequencies is large enough. 
 

1 Problem settings 
 
We study the problem of determining permittivity of a 
dielectric inclusion (a layer) in a standard rectangular 
waveguide (Fig. 1) from the elements of the scattering 
matrix or the transmission coefficient of the principal 
waveguide mode.  
 

 
 
Figure 1.  Rectangular waveguide with a layer [1]. 
 
The measurement data registered at the layer boundaries 
have the form [2] 
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while the values of the scattering matrix elements 
measured at the waveguide flanges are 
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which are calculated by the complex amplitude of the 
harmonic Maxwell’s equations solution 

tiet  )(ˆ),( rErE , ,2 f  f is the source frequency, 

satisfying the condition of single-mode waveguide. Here  
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a  is the waveguide width, ,)(wgd )(layerd  are the 

waveguide and layer lengths, 1d , 2d  are the distances 

between the ports (points of source and field 
measurements) and the layer, 

,21
)()( dddd layerwg  )(layer   is the layer relative 

dielectric constant, and 0  is the dielectric constant of 

vacuum; 
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are the phase shift values inside the waveguide. 
 
Introduce the transmission coefficient of the principal 
mode in a single-mode perfectly conducting rectangular 
waveguide scattered by the dielectric layer  
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Here ),(
12

layerwgS  is the element of the scattering matrix 

corresponding to the transmission of the wave through the 
waveguide containing the dielectric layer and 

)(
0

)(
12

wgwg ZS   is the corresponding element of the 

scattering matrix for an empty waveguide.  
 
In the presence of a dielectric insert of arbitrary shape the 
measurement results change due to the occurrence, in 



addition to the harmonic waves in the principal mode, a 
countable number of evanescent waves (standing waves 
that exponentially decay along the axis of the waveguide). 
The transmission coefficient of the principal mode through 
a dielectric layer can be found as 
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where 
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       Formulas (4)—(6) constitute the exact solution of 
Maxwell’s equations for the transmission coefficient of the 
principal mode; a recurrent formula generalizing (4) to the 
case of a multilayer inclusion is given in [4]. They are 
equivalent to expressions (2), (3) known since 1970 [2]. 
Representations (1), (2) were used in the NRW method [2, 
3] according to which complex parameters of a slab in free 
space and in a waveguide are determined explicitly from 

the scattering matrix elements )(
11

layerS , )(
12

layerS  using the 

expressions  
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Due to the properties of function zln of a complex 
variable this algorithm has ambiguity. The ambiguity was 
removed in [3] using multi-frequency measurements and 
finite-difference approximation of the derivative of the 
phase Z  with respect to f  which is monotonic with 

respect to variable   on certain intervals of its variation. 
Another remaining difficulty of this algorithm, however, is 
that it is not stable due to instability of approximate 
differentiation employing inaccurate data.  
 
In the next sections we discuss an alternative to the NRW 
method for determining the value of the dielectric constant 
of an inclusion solely from the transmission coefficient (3), 
(4). An advantage of the developed approach is caused by 
the convenience of measurements when the phase shifts 
and exact values of the distances between the ports and the 
layer are not used. 
 

2 Algorithms of  Experimental Data 
Processing 

 
Introduce the vectors 
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,   exp,...1
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of the frequency and complex-valued measurement data of 

expN  experiments. Consider the equation 
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for the (unknown) dielectric constant of the layer 

1)( layer , where 
 ),(),...,,(),(

exp1 Nfgfg  fg  

with g  defined in (5), (6), 
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We formulate inverse problems that constitute different 
permittivity reconstruction scenarios. To this end, let 

 },1:{)(   },1:{)(  
 

and by 

     ),(, )( fgf G ℂ )(,exp  N
 

denote the set of values of function ),( fg   for the selected 

frequency vector f   (a curve on the complex plane). 
 

Problem 1. Find a real )()(  layer  satisfying the 

relation (7) for a given complex vector  )(exp ,  fg G  
with the selected frequency vector f . 
 

Problem 2. Find a real )()(  layer  satisfying the 

relation (7) for a given complex vector expg ℂ
expN

 with 

the selected frequency vector f . 
 
Check the fulfillment of the correctness condition for these 
problems; namely, the existence and uniqueness of 
solution and its continuous dependence on the input data. 
Problem 1 describes a perfect experiment exactly 
corresponding to the mathematical model, it is solvable by 

the definition of the set   ., )(fG  However, its 

uniqueness may be violated. In fact, if 1exp N  for any 

chosen frequency the solution is not unique due to the 
existence of a countable set ,...},1,{ mm  satisfying the 

relation 0))(sin( )()( layerz dfk
m

 that specifies 

self-intersections points of curve ),( )(fG  (see Fig. 2). 

 

Using a priori information about )(layer  we can achieve 

the uniqueness of solution by adjusting domain )(  and a 
frequency range ].,[ 21 ff  However, the formally correct 

problem may be ill-conditioned in the vicinity of the points 
mentioned above where the parameter values are such that 

the quantity 0))(sin( )()( layerz dfk  in the denominator.  

 
When the number of measurements expN  is large enough, 

the solution to Problem 1 exists and is unique. In fact, the 
proposition in Section 3 below demonstrates that ),( fg   



becomes a one-to-one vector-function of real variable   
for a fixed set of frequency values f . 
 
Problem 2 simulates processing noisy experimental data. 
This problem is also incorrect; namely, in addition to the 
presence of self-intersection points noted for Problem 1, it 
may be unsolvable. Indeed, in actual experiments, it is 

typical that ),( )(exp  fg G  because the set (a curve) has 

the zero measure on the complex plane. 
 
To obtain an approximate solution of incorrectly posed 
Problem 2, it is necessary to replace it with another one 
which will be well-posed and such that its solution 
approximates the sought solution of Problem 1 when the 
measurement error decreases. 
 

 
 

Figure 2. The branches of the curve  )(, fG , 
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3 One-to-One Correspondence   
 
One can show that the transition from a single-frequency 
experiment to a multi-frequency one improves the 
properties of the inverse problem providing its unique 
solvability. The following statement is valid: 
 
Proposition 
a. If 1exp N  and E is large enough, there is no one-to-one 

correspondence between )(
  and ),( )(

fG . 

b. For any 1 there is a number N  such that for 

 NNexp  there is one-to-one correspondence between 

)(
  and ),( )(

fG  (see Fig. 3):  
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Proof  
a. The one-to-one correspondence of the sets specified in 
part a is violated because of the existence of 
self-intersection points  
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b. (reductio ad absurdum). Let ,1exp N and ,1 2  be the 

values of the dielectric constant of the layer such that 
,1 21    
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From the properties of functions )(xH  and )( ft  it 

follows that 0)(
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Figure 3. a. The vectors  
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Thus, at any frequency ,f  the parametric curve 

representing the set of values of function ),( fg   has a 



countable number of the touch points of loops in the 
complex plane, while the curve corresponding to the vector 
function  ),(),...,,(

exp1 Nfgfg   for a selected set of 

frequencies ),...,(
exp1 Nff  in a multidimensional complex 

space is not self-intersecting if expN  is large enough. For 

that reason when switching from a single-frequency to a 
multi-frequency experiment with a sufficiently small 
frequency step, Problem 1 of reconstructing the layer real 
permittivity becomes correct. 
 

4 Multi-frequency Least Squares 
Method 

 
Problem 3 (least squares method, LSM). Find a real value 

)(layer  satisfying the condition 
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for a given complex vector  )(exp ,  fg G  with the 

selected frequency vector f . 
 
Problem 4 (LSM for 1exp N ). Find a real value )(layer  

satisfying the condition 

 )(expexp)( ,),(min),(   gfggfg layer

 
for a given complex value  )(exp ,  fGg  with the 

selected frequency value f . 

 

 
 

Figure 4. The branches of the curve  ,, )(fG ,1exp N  

GHz,25.9f ),12.3,09.3()08.2,05.2()(   with the 

intersection point ),(),( 21 fgfg   ;  

 experimental values },{ exp
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k  are unstable solution of Problem 4, ,...1k . 

 
Problems 3 and 4 are solvable [5]; however, when expN  is 

a small number the solution can be unstable in the 
neighborhood of self-intersection points. Figure 4 
demonstrates the situation when the solution to Problem 4 
differs significantly while the experimental data are close. 
This obstacle becomes urgent if the domain of location of 
the sought permittivity admits only a rough estimate and 
consequently the number and position of self-intersection 
of the curve generally cannot be predicted. When the 
number of measurements expN  is large enough, the 

(unique) solution to Problem 3 exists and depends 
continuously on possibly inaccurate experimental data; 
that is, LSM is stable. 
 
In [5] the estimates are obtained of the condition number 
which shows how much the sought permittivity value can 
change with a small error in experimental data. The 
estimates take into account the effect of the size of the layer, 
width of the frequency band, and its distance to the lowest 
possible value (cutoff frequency). Applying these results 
one can get the necessary rate of convergence of the 
approximate solution to the exact value when improving 
the quality of experimental data.  
 
Note that a consequence of the proposition is an estimate 
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for the step of the frequency grid, it is a sufficient condition 
for the correctness of inverse Problem 1 of determining the 
layer permittivity in a rectangular waveguide from the data 
of a perfect (noiseless) multi-frequency experiment and 
can be used in its planning. 
 
References 
 
[1] P. Tomasek, Y. Shestopalov, “Verification of 
Computational Model of Transmittion Coefficients of 
Waveguide Filters”, PIERS Proc., Prague, 2015, 
pp.1538-1541. 
 
[2] A. M. Nicolson and G. F. Ross, “Measurement of the 
intrinsic properties of materials by time-domain 
techniques”, IEEE Trans. Instrum. Meas., 19, 4, 1970, pp. 
377–382, doi: 10.1109/TIM.1970.4313932. 
 
[3] W. B. Weir, “Automatic Measurement of Complex 
Dielectric Constant and Permeability at Microwave 
Frequencies”, Proceedings of the IEEE, 62, 1, 1974, pp. 
33-36, doi: 10.1109/PROC.1974.9382. 
 
[4] Y. Shestopalov, Y. Smirnov, and E. Derevyanchuk, 
“Permittivity Reconstruction of a Diaphragm in a 
Rectangular Waveguide: Unique Solvability of Benchmark 
Inverse Problems”, PIERS Proc., Prague, 2015, pp. 
1528-1532. 
 
[5] E. Sheina, Y. Shestopalov, and A. Smirnov, “Stability 
of least squares for the solution of an ill-posed inverse 
problem of reconstructing real value of the permittivity of a 
dielectric layer in a rectangular waveguide”, PIERS Proc., 
Roma, 2019.  


