

Mathematical Theory of Surface Waves in an Inhomogeneous Waveguide

Eugene Smolkin(1) and Maxim Snegur(1)
(1) Penza State University, Penza, Russia.

Abstract

The problem on surface waves in an inhomogeneous metal-dielectric waveguide structure is reduced to a boundary value problem for the longitudinal components of the electromagnetic field in Sobolev spaces. We formulate the definition of solution using variational relation. The variational problem is reduced to the study of an operator function. We investigate properties of the operators of the operator function needed for the analysis of its spectral properties. We prove theorem of discrete spectrum.

1 Introduction

An approach based on the reduction to eigenvalue problems for operator pencils considered in Sobolev spaces was proposed by Smirnov in [1, 2]. General theory of polynomial operator-functions called operator pencils is sufficiently well elaborated. A fundamental work by Keldysh [3] pioneered investigation of non-self-adjoint polynomial pencils. Operator pencils were applied to the analysis of electromagnetic problems in [4, 5].

Open waveguide structures were investigated by a number of authors [4, 5, 6]. However, for open (unshielded) structures, a complete theory of wave propagation is not constructed. In this case the problem becomes much more complicated (due to the non-compactness of the corresponding operators). The article deals with open inhomogeneous metal-dielectric waveguide structures i.e. the case of an unbounded exterior domain is considered. The first results on the investigation of such problems were recently obtained in [7, 8] for the polarized waves propagating in a circular waveguide.

In this problem we have to analyze not the operator pencil, but an operator-function. Nevertheless, it is possible to study the properties of the operator-function in sufficient detail and obtain results on its spectrum. The discreteness of the spectrum of the problem of surface waves is proved in the article. Note that we consider waves that decrease at a distance from the waveguide (we impose the corresponding conditions at infinity). Other types of waves are not considered. This approach was used to study the shielded waveguide structures as well [9, 10, 11].

2 Statement of the problem on surface waves

Consider the three-dimensional space $\mathbb{R}^3$ with the cylindrical coordinate system $O\rho\varphi z$. The space is filled with an isotropic source-free medium with permittivity $\varepsilon = \varepsilon_0 \equiv const$ and permeability $\mu = \mu_0 \equiv const$, where $\varepsilon_0$ and $\mu_0$ are permittivity and permeability of vacuum. An inhomogeneous metal-dielectric waveguide with a cross-section

$$\Sigma := \{ (\rho, \varphi, z) : r_0 \leq \rho \leq r, 0 \leq \varphi < 2\pi \}$$

and a generating line parallel to the axis $Oz$ is placed in $\mathbb{R}^3$.

The cross section of the waveguide, which is perpendicular to its axis, consists of two concentric circles of radii $r_0$ and $r$ (see Fig. 1): $r$ is the radii of the internal (perfectly conducting) cylinder, and $r - r_0$ is the thickness of the external (dielectric) cylindrical shell. The geometry of the problem is shown in Fig. 1.

![Figure 1. Geometry of the problem.](image)

The problem on surface waves in an inhomogeneous metal-dielectric waveguide structure is the problem of finding nontrivial running wave solutions of the homogeneous system of Maxwell equations, i.e., solutions with dependence of the from $e^{im\varphi + i\gamma z}$ on the coordinates $\varphi$ and $z$, along which the structure is regular,

$$\begin{aligned}
\begin{cases}
\text{rot} \mathbf{H} = -i\varepsilon \mathbf{E}, \\
\text{rot} \mathbf{E} = i\mu \mathbf{H},
\end{cases}
\end{aligned}$$

with boundary conditions for tangential electric components on perfectly conducting surfaces ($\rho = r_0$)

$$\begin{aligned}
E_\varphi (r_0) = 0, \quad E_z (r_0) = 0,
\end{aligned}$$
transmission conditions for tangential electric and magnetic components on surfaces of “jump” of permittivity and permeability ($\rho = r$)

$$[E_{\varphi}]_r = 0, [E_z]_r = 0, [H_{\varphi}]_r = 0, [H_z]_r = 0,$$

the finite energy condition

$$\int_{r_0}^{\infty} (\tilde{\varepsilon}|E|^2 + \tilde{\mu}|H|^2) d\rho < \infty,$$  

and the radiation condition at infinity: the electromagnetic field decays as $o(\rho^{-1/2})$ for $\rho \to \infty$.

The Maxwell system (1) is written in the normalized form. The passage to dimensionless variables has been carried out: namely, $k_0 \rho \to \rho$, $\gamma \to \frac{\gamma}{k_0}$, $\sqrt{\frac{\mu_0}{\varepsilon_0}} H \to H$, $E \to E$, $\omega \to \omega_0 k_0$. (The time factor $e^{-i\omega t}$ is omitted everywhere.)

We assume that the permittivity and permeability in the entire space have the form

$$\tilde{\varepsilon} = \left\{ \begin{array}{ll} \varepsilon(\rho), & 0 \leq \rho \leq r, \\
1, & \rho > r, \end{array} \right. \quad \text{and} \quad \tilde{\mu} = \left\{ \begin{array}{ll} \mu(\rho), & 0 \leq \rho \leq r, \\
1, & \rho > r, \end{array} \right. $$

We also assume that $\varepsilon(\rho) > 1$ and $\mu(\rho) > 1$ are twice continuously differentiable function on the segment $[r_0, r]$, i.e., $\varepsilon(\rho) \in C^2[r_0, r]$ and $\mu(\rho) \in C^2[r_0, r]$. Im$\varepsilon(\rho) = 0$, Im$\mu(\rho) = 0$.

The problem on normal waves is an eigenvalue problem for the Maxwell equations with spectral parameter $\gamma$, which is the normalized propagation constant of GL.

Rewrite system (1) in the expanded form and express the functions $E_\rho, H_\rho, E_\varphi, H_\varphi$ via the functions $E_z$ and $H_z$ from the first, second, fourth, and fifth equations in system (1)

$$E_\rho = \frac{m \tilde{\mu} H_z - i \gamma \rho E_\varphi'}{\rho \tilde{k}_z^2}, \quad H_\rho = -\frac{i\gamma \rho H_z + \tilde{m} E_z}{\rho \tilde{k}_z^2},$$

$$E_\varphi = \frac{\gamma m E_z + i \gamma \rho H_z'}{\rho \tilde{k}_z^2}, \quad H_\varphi = \frac{\gamma \rho H_z - i \rho \tilde{\mu} E_\varphi'}{\rho \tilde{k}_z^2},$$

where $\tilde{k}_z^2 = \gamma^2 - \tilde{\varepsilon} \tilde{\mu}$.

It follows from Eqs. (6) that the normal wave field in the waveguide can be represented with the use of two scalar functions

$$u_e := i E_z(\rho), \quad u_m := H_z(\rho).$$

Thus, the problem has been reduced to finding the longitudinal components $u_e$ and $u_m$ of the electric and magnetic fields. Throughout the following, $(\cdot)'$ stands for differentiation with respect to $\rho$.

We have the following eigenvalue problem for the longitudinal field components $u_e$ and $u_m$: find $\gamma \in \mathbb{C}$ such that, for given $m \in \mathbb{Z}$, there exist nontrivial solutions of the system of differential equations

$$\begin{cases}
(\frac{\varepsilon \rho}{k_z^2} u_e)' - \frac{\varepsilon}{\rho} (\rho^2 + \frac{m^2}{k_z^2}) u_e = \gamma m (\frac{\varepsilon \mu}{k_z^2})', \\
(\frac{\mu \rho}{k_z^2} u_m)' - \frac{\mu}{\rho} (\rho^2 + \frac{m^2}{k_z^2}) u_m = \gamma m (\frac{\varepsilon \mu}{k_z^2})',
\end{cases}$$

satisfying the boundary conditions for $\rho = r_0$

$$u_e(r_0) = 0, \quad u_m(r_0) = 0,$$

transmission conditions for $\rho = r$

$$[u_e]_r = 0, [u_m]_r = 0,$$

$$\gamma m [u_e]_r - \frac{\rho \tilde{\mu} u_m'}{k_z^2} = 0,$$

$$\gamma m [u_m]_r - \frac{\rho \tilde{\mu} u_e'}{k_z^2} = 0,$$

and also with the condition of boundedness of the field in any finite domain and the decay condition at infinity.

Once we determine the longitudinal field components $u_e$ and $u_m$ by solving problem (8)–(10), we can find the transverse components by formulas (6). The field $(E, H)$ thus obtained satisfies all conditions (1)–(5). The equivalence of reduction to problem (8)–(10) is not valid only for $\gamma' = \tilde{\varepsilon} \tilde{\mu}$; in this case it is necessary to study the system (1) directly.

For $\rho > r$, we have $\tilde{\varepsilon} = 1$, $\tilde{\mu} = 1$; in view of the condition at infinity, we obtain a solution of the system (8) in the form

$$\begin{cases}
u_e(\rho; \gamma, m) = C_1 K_m(\kappa_1 \rho), \\
u_m(\rho; \gamma, m) = C_2 K_m(\kappa_2 \rho),
\end{cases}$$

where $\kappa_1^2 = \gamma^2 - 1$ and $K_m$ is the modified Bessel function (the Macdonald function) [12]; $C_1$ and $C_2$ are constants.

The function $K_1(\gamma)$ is analytic in the domain

$$\mathbb{C} \setminus \Lambda_\kappa,$$

where $\Lambda_\kappa := \{ \gamma : \text{Im} \gamma^2 > 0, \gamma^2 \leq 1 \}.$

For $r_0 \leq \rho \leq r$, we have $\tilde{\varepsilon} = \varepsilon(\rho)$ and $\tilde{\mu} = \mu(\rho)$, and from system (8) we obtain the system of differential equations

$$\begin{cases}
\left( \frac{\varepsilon \rho}{k_z^2} u_e' \right)' - \frac{\varepsilon}{\rho} (\rho^2 + \frac{m^2}{k_z^2}) u_e = \gamma m (\frac{\varepsilon \mu}{k_z^2})', \\
\left( \frac{\mu \rho}{k_z^2} u_m' \right)' - \frac{\mu}{\rho} (\rho^2 + \frac{m^2}{k_z^2}) u_m = \gamma m (\frac{\varepsilon \mu}{k_z^2})',
\end{cases}$$

Definition 1. If for given $m$ there exist nontrivial functions $u_e$ and $u_m$ corresponding to some $\gamma \in \mathbb{C}$ such that these functions are the solutions (11) for $\rho > r$, are a solution of system (12) for $r_0 \leq \rho \leq r$, and satisfy the transmission conditions (10), then $\gamma$ is called a characteristic number of problem $P_m$.

Definition 2. The pair $u_e$ and $u_m$, $|u_e|^2 + |u_m|^2 \neq 0$, will be called an eigenvector of problem $P_m$ corresponding to the characteristic number $\gamma \in \mathbb{C}$. 

3 The Sobolev spaces and variational relation

We will find the solutions \(u_c\) and \(u_m\) of the problem \(P_m\) in Sobolev spaces

\[ H_0^1((0,r), V_m) = \{ f : f \in H^1((0,r), V), f(0) = 0 \} \quad \text{and} \quad H^1((0,r), V), \]

with the inner product and the norm

\[
(f,g)_1 = \int_0^r (f'g' + fg) \, d\rho,
\]

and \(\|f\|^2_1 = (f,f)_1 = \int_0^r (|f'|^2 + |f|^2) \, d\rho.\)

Let us give variational formulation of the problem \(P_m\). We multiply equations (12) by arbitrary test functions \(v_c \in H_0^1((0,r))\) and \(v_m \in H^1((0,r))\) (we can assume that these functions are continuously differentiable in \((r_0, r)\), next we apply Green’s formula, taking into account boundary condition for \(\rho = r_0\) and \(\rho = r\), we obtain a variational relation

\[
\gamma^2 \int_0^r (u_c v_c + u_m v_m) \, d\rho + \frac{\gamma^2}{r} \int_0^r (u'_c v'_c + u'_m v'_m) \, d\rho + \frac{\gamma^2}{r} \int_0^r (p_c u'_c v_c + p_m u'_m v_m) \, d\rho - \frac{\gamma^2}{r} \int_0^r (u_c u'_c + u_m u'_m) \, d\rho + \frac{\gamma^2}{r} \int_0^r (q_c u'_c + q_m u'_m) \, d\rho + \frac{\gamma^2}{r} \int_0^r (r_1 u_c v_c + r_2 u_m v_m) \, d\rho + \frac{\gamma^2}{r} \int_0^r (\tau e u'_c v_c + \tau m u'_m v_m) \, d\rho
\]

\[
= \gamma \int_0^r (f_c u_c v_c + f_m u_m v_m) \, d\rho = 0, \quad (13)
\]

where

\[
\begin{align*}
p_c &= -\frac{\varepsilon'}{\varepsilon} - \frac{1}{\rho} \varepsilon = -\frac{\mu e + \mu e'}{\rho}, \quad f_c = -\frac{m}{\rho} \left(\frac{\mu e'}{\rho} - \varepsilon\right), \\
p_m &= -\frac{\varepsilon' \mu}{\mu}, \quad q_m = -\frac{\mu e'}{\rho}, \quad f_m = -\frac{m}{\rho} \left(\frac{\mu e'}{\rho} - \frac{\varepsilon'}{\rho^2}\right), \\
r_1 &= \frac{m^2}{\rho^2} - 2\mu e, \quad r_2 = \mu e \left(\frac{\mu e'}{\rho^2} - \frac{m^2}{\rho^2}\right), \quad \varepsilon = \mu (r) e(r) - 1 > 0.
\end{align*}
\]

The variational relation (13) has been obtained for smooth functions \(v_c\) and \(v_m\).

4 The problem of the spectrum of the operator function

Let \(H = H^1_0((r_0, r) \times H^1((r_0, r)\) be the Cartesian product of Hilbert spaces with inner product and norm

\[
(u, v) = (u_1, v_1)_1 + (u_2, v_2)_1, \quad \|u\|^2 = \|u_1\|^2_1 + \|u_2\|^2_1;
\]

\[
u = (u_1, u_2)^T, \quad v = (v_1, v_2)^T.
\]

Then the integrals occurring in (13) can be viewed as sesquilinear forms over the field \(\mathbb{C}\) defined on the space \(H\) and depending on the arguments \(u = (u_c, u_m)^T\) and \(v = (v_c, v_m)^T\). These forms define some bounded linear operators \(T : H \rightarrow H\) by the formula [13]

\[
t(u, v) = (Tu, v), \quad \forall v \in H,
\]

provided that the forms themselves are bounded.

Consider the following sesquilinear forms and the corresponding operators \(\forall v \in H\):

\[
k(u, v) := \int_0^r (u_c v_c + u_m v_m) \, d\rho = (K u, v),
\]

\[
k_1(u, v) := \int_0^r (r_1 - 1) u_c v_c + u_m v_m) \, d\rho = (K_1 u, v),
\]

\[
k_2(u, v) := \int_0^r (r_2 - \mu e) u_c v_c + u_m v_m) \, d\rho = (K_2 u, v),
\]

\[
\overline{k}(u, v) := \int_0^r (f_c u_c v_c + f_m u_m v_m) \, d\rho = (\overline{K} u, v),
\]

\[
a_1(u, v) := \int_0^r u_c v'_c + u_m v'_m + u_c v_c + u_m v_m) \, d\rho = (A u, v),
\]

\[
a_2(u, v) := \int_0^r (\mu e' u'_c v_c + \mu e' u'_m v_m + \mu e v_c + \mu e v_m) \, d\rho = (A u, v),
\]

\[
b_1(u, v) := \int_0^r (p_c u'_c v_c + p_m u'_m v_m) \, d\rho = (B_1 u, v), \quad \forall v \in H,
\]

\[
b_2(u, v) := \int_0^r (\mu e') u'_c v_c + u'_m v_m) \, d\rho = (B_2 u, v),
\]

\[
b_3(u, v) := \int_0^r (q_c u'_c v_c + q_m u'_m v_m) \, d\rho = (B_3 u, v),
\]

\[
s(u, v) =
\]

\[
= \frac{\kappa_2^2}{\varepsilon}(\frac{\mu e'}{\rho} u_c(r) - \frac{\varepsilon'}{\rho} u_c(r)) \, v_r(r) + \frac{\kappa_2^2}{\mu}(\frac{\mu e'}{\rho} u_m(r) - \frac{\varepsilon'}{\rho} u_m(r)) \, v_m(r) = (S u, v).
\]
The variational problem (13) can be written in the operator form
\[ N(\gamma)u := (\gamma K + \gamma^2 (K_1 + B_1 + I) - \gamma K + K_2 - A - B_2 + B_3 + S(\gamma))u = 0. \] (14)

5 Properties of the operator-function

We have reduced the problem on normal waves to the study of spectral properties of the operator function $N$. In this connection, we first consider the properties of the operators introduced in the preceding section. The validity of Lemmas and Theorems demonstrated in [7]

**Statement 1.** The bounded operator $A : H \to H$ is positive definite $A \geq \gamma I$, where $0 < \gamma = \min_{\rho \in \rho(I)} \sqrt{\mu(\rho)e(\rho)}$.

**Statement 2.** The bounded operators $K$, $K_1$, $K_2$ and $\tilde{K} : H \to H$ are compact, and $K > 0$.

**Statement 3.** The operators $B_1$, $B_2$ and $B_3 : H \to H$ are compact.

**Statement 4.** The operator $S : H \to H$ is compact.

**Statement 5.** The operator $\gamma I - A : H \to H$ is bounded and continuously invertible in the domain

\[ \mathcal{C}\Lambda_{E} \setminus \Lambda_{E} := \{ \gamma : \Im \gamma = 0, \gamma \leq |\Re \gamma| \leq \gamma \}, \]

where $0 < \gamma = \max_{\rho \in \rho(I)} \sqrt{\mu(\rho)e(\rho)}$.

**Statement 6.** There exists a $\gamma \in \mathbb{R}$ such that the operator $N(\gamma)$ is continuously invertible; i.e., the resolvent set $\rho(N) := \{ \gamma : \exists N^{-1}(\gamma) : H \to H \}$ of the operator function $N(\gamma)$ is nonempty, $\rho(N) \neq \emptyset$.

**Theorem 1.** The operator function $N(\gamma) : H \to H$ is bounded, holomorphic, and Fredholm in the domain $\Lambda = \mathcal{C}\Lambda \setminus (\Lambda_{K} \cup \Lambda_{E})$.

**Theorem 2.** The spectrum of the operator function $N(\gamma) : H \to H$ is discrete in the domain $\Lambda$; i.e., this function has finitely many characteristic points of finite algebraic multiplicity on any compact set $K_0 \subset \Lambda$.

6 Conclusion

We have reduced the boundary eigenvalue problem for the Maxwell equations describing surface waves in a dielectric waveguide to an eigenvalue problem for an operator-function. We have proved fundamental properties of the spectrum of normal waves including the discreteness and a statement describing localization of eigenvalues of the operator-function on the complex plane.

7 Acknowledgments

The reported study was funded by RFBR, project number 20-31-70010.

References


