Estimation of the thresholds for corneal epithelium damage induced by millimeter-wave electromagnetic field exposure with a mathematical model based on CEM43°C criterion

(1) Tokyo Metropolitan University, Hachioji, Tokyo, Japan
(2) Kanazawa Medical University, Kahoku, Ishikawa, Japan
(3) National Institute of Information and Communications Technology, Koganei, Tokyo, Japan

Extended Abstract

It is expected that new millimeter wave (MMW) technologies, e.g. the 5th generation (5G) wireless systems, the Wireless Gigabit (WiGig) systems and so on, will be in wide spread use in near the future. Therefore, it is becoming public concern to consider the safety of the use of MMW technologies. However, a few studies for corneal damage thresholds by MMW exposure have been performed. Against this background, we conduct the study to estimate the threshold levels of ocular damage, especially within corneal region, under the MMW exposure from 40 GHz to 95 GHz.

The mathematical model is proposed to estimate the threshold incident power levels of MMWs based on CEM43°C (cumulative number of equivalent minutes at 43°C) criterion. CEM43°C criterion is the index of “thermal isoeffective dose”, which is originally applied for cancer therapy from 1984. Corneal damage induced by MMW is mainly caused by thermal dose, therefore we think it is reasonable to introduce the CEM43°C criterion to the estimation of the threshold.

Coupled analysis for electromagnetic field (EMF) and heat transport (HT) is performed from 40 GHz to 95 GHz with 100µm spatial resolution of rabbit and human eye model. In the heat transport simulation, convectional heat transfer model, driven by aqueous humor in the anterior chamber, is considered. 3D time development temperature distributions are obtained during MMW exposure by varying incident power density from 50 mW/cm² to 300mW/cm² at each frequency to obtain threshold. Moreover, 3D time dependent CEM43°C index distribution within corneal region is calculated from these time dependent temperature data.

Threshold levels of incident power density for 360 s exposure time is estimated from these CEM43°C data in the condition of acute and minor damage as for cornea, which was described in past literature as 21 < CEM43°C < 40 min. [2] Consequently, threshold levels estimated by this mathematical model is fairly consistent with threshold level of the damaging dose, 50% (DD50) obtained by in vivo experiment as shown in Fig. 1. We think our proposed model with CEM43°C criterion is feasible to estimate threshold power levels for corneal damage.

Figure 1. Comparison of the threshold incident power levels between the mathematical model based on the CEM43°C criterion and the DD50 experimental data with the probit analysis.

Acknowledgement

This work was supported by the Committee to Promote Research on the Potential Biological Effects of Electromagnetic Fields, Ministry of Internal Affairs and Communications, Japan.

References