Analysis of Dimensional Invariance in U-Slot Microstrip Patch via Segmentation Method

Mahrukh Khan* and Deb Chatterjee

(1) CSEE Department, University of Missouri at Kansas City (UMKC), KC, MO 64110, USA

Extended Abstract

Frequency independent or self complementary antennas have constant input impedance, independent of their geometrical configuration [1],[2]. For symmetrically located U-Slot microstrip patch, the dimensional invariance method (DI) has been shown to produce wideband designs [3] for symmetrically located U-Slots. This unique feature of the DI technique remains unexplored.

Segmentation method can be effectively used to analyse DI method because it divides the U-Slot patch into simpler regular rectangular segments for which the Green’s functions are known [4]–[6]. It provides flexibility to analyze symmetrically and asymmetrically located U-Slots by varying the dimensions of the rectangular segments. The quantity Z_{pq} for a U-Slot’s rectangular segment of sides (a,b) and with ports p and q on the same side reads as [5]

$$Z_{pq} = j\omega\mu\varepsilon \left[-\cot(\alpha k) + \frac{2ab}{W_p W_q} \sum_{n=1}^{\infty} \left(\frac{\sin(n\theta_1) - \sin(n\theta_2)}{n^2 - n^2} \sin(n\theta_3) - \sin(n\theta_4) \right) \right],$$

(1)

where $\theta_1 = \pi b(y_p + W_p^2)$, $\theta_2 = \pi b(y_p - W_p^2)$, $\theta_3 = \pi (y_q + W_q^2)$, $\theta_4 = \pi (y_q + W_q^2)$, $B = \frac{bk}{\pi}$, and the wavenumber in the dielectric is defined as

$$k^2 = \omega^2 \mu\varepsilon (1 - j\frac{Q}{Q_T}).$$

(2)

The terms in (1) and (2) are all defined explicitly in [5] and are omitted here for brevity. The total quality factor Q_T in (2) is given by [7, p. 280, Eq. (4.64)]:

$$\frac{1}{Q_T} = \frac{1}{Q_{sp}} + \frac{1}{Q_c} + \frac{1}{Q_{sw}} + \frac{1}{Q_d}.$$

(3)

In [6] the surface wave power and hence Q_{sw} in (3) was omitted, implying that the results are valid for electrically thin substrates. Since wideband behavior in microstrip antennas is observed for electrically thicker substrates [7, p. 288, Fig. 4-16], the input impedance of the probe-fed U-Slot needs to be recalculated considering both surface (Q_{sw}) and space (Q_{sp}) wave powers in (1)–(3).

Parametric study of both symmetric and asymmetric U-Slots via the segmentation technique, followed by a full-wave characteristic mode analysis [3], is expected to reveal the nature of the dimensional invariance method. The results are currently in progress for future presentation.

References