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Abstract 
 
 We present an approximate diagonalization of the Green’s function to implement a stable multilevel fast 
multipole algorithm (MLFMA) for low-frequency problems.  The diagonalization is based on scaled spherical 
functions, leading to stable computations of translation operators at all distances and for all frequencies.  Similar to the 
conventional diagonalization, shift operators are expressed in terms of complex exponentials, while radiated and 
incoming fields are expanded in terms of scaled plane waves.  Even though its accuracy is limited, the low-frequency 
MLFMA developed by using the proposed diagonalization technique provides stable matrix-vector multiplications for 
arbitrarily low frequencies, while it can easily be implemented via minor modifications on the existing codes.   
 
 

1. Introduction 
 
 Diagonalization of the Green’s function is required in the fast multipole method and in its multilevel version, 
namely, the multilevel fast multipole algorithm (MLFMA) [1].  Unfortunately, the standard diagonalization of the 
Green’s function using plane wave expansions and monopole-to-monopole translation operators suffers from the well-
known low-frequency breakdowns [2], which inhibit its application at short distances with respect to wavelength.  This 
is particularly important for low-frequency electrodynamics problems, where objects under investigation are small and 
their discretizations require much smaller elements with respect to the operating wavelength.  Employing a 
conventional implementation of MLFMA to such a problem leads to many interactions that must be computed directly, 
leading to quadratic time and memory complexities.  In the literature, low-frequency breakdowns are tackled by using 
alternative diagonalization approaches [3-5] or by simply omitting diagonalizations at subwavelength interactions and 
computing them via multipole factorizations [6-11].  Unfortunately, most of these approaches need new 
implementations that must be programmed from scratch, while many of them do not provide the desired efficiency in 
comparison to plane-wave expansions.  Hence, new approaches are still required to solve low-frequency problems both 
efficiently and accurately. 
 
 In this work, we present an approximate diagonalization of the Green’s function using scaled spherical functions 
and plane waves.  Even though the diagonalization is approximate and its accuracy is limited, it is valid and stable at 
arbitrarily short distances.  The proposed diagonalization is very similar to the conventional one such that it can be 
implemented easily via minor modifications on the existing codes of MLFMA.  We show that the resulting low-
frequency MLFMA implementation provides accurate solutions of low-frequency problems without resorting to 
fundamental changes in the factorization and diagonalization of the Green’s function.  
  
 

2. An Approximate Diagonalization of the Green’s Function 
 
 Efficient computations of far-zone interactions in MLFMA require the diagonalization of the Green’s function, 
which can be written in the conventional form as 

g(r, ′r ) = ik
(4π )2 d 2k̂β(k, k̂,v)∫  α(k, k̂,w), (1)  

where r − ′r = w + v,  w > v ,  k = 2π / λ  is the wavenumber,   

β(k, k̂,v) = exp(ikk̂ ⋅v) (2)  
represents diagonal shift operators, and  

α(k, k̂,w) ≈ it (2t +1)ht
(1) (kw)Pt (k̂ ⋅ ŵ)

t=0

τ

∑ (3)  
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represents diagonal (monopole-to-monopole) translation operators [1].  The angular integration in (1) is carried out to 
account for all plane waves that are used to expand radiated and incoming fields.  The summation in (3) is truncated at 
τ ,  which depends on the shift and translation distances in terms of wavelength.  In an MLFMA implementation, the 
diagonalization in (1)-(3) is used at different levels involving basis and testing groups of different sizes.  In general, 
aggregation-translation-disaggregation sequences are carried out to perform far-zone interactions on-the-fly, by 
computing radiated fields of basis groups in terms of plane waves, converting them into incoming fields between far-
zone groups, and computing incoming fields at group centers to be received finally by testing functions.  For a standard 
electrodynamics problem involving a large object and its discretization with approximately λ/10 elements, all these 
operations can be performed in O(N logN )  time while using O(N logN )  memory. 
 
 The standard diagonalization in (1)-(3) is prone to stability problems when it is used at short distances, i.e., when 
w  and v  are small with respect to wavelength [2].  Specifically, the spherical Hankel function in (3) becomes very 

large for small arguments and large orders, leading to a loss of accuracy while they are combined to compute translation 
operators.  In such cases, where the argument is very small, it becomes impossible to obtain a reasonable accuracy, 
while adding more harmonics leads to a divergence with unbounded translation values.  In addition to these problems 
occurring in the translation stage, it is well known that exponential functions in (2) become incapable of resolving 
radiation and receiving patterns with a desired level of accuracy.  Consequently, the diagonalization in (1)-(3) cannot be 
used for computing interactions between small groups of basis and testing functions.  Unfortunately, low-frequency 
problems, which involve small objects and details with respect to wavelength, need particularly fine discretizations for 
accurate modeling of objects, leading to many subwavelength groups.  Using a standard diagonalization, such short 
distance interactions between small groups must be performed directly or by using alternative approaches for the 
factorization and diagonalization.   
 
 The most common approaches for low-frequency problems in the literature involve different diagonalizations of 
the Green’s function, mostly by employing evanescent waves at short distances [3-5].  Alternatively, the diagonalization 
may be totally avoided [11], while using multipoles for the factorization and using multipole-to-multipole translations 
to perform far-zone interactions.  On the other hand, all these approaches more or less need re-implementations of 
MLFMA.  Even though these techniques are capable of providing highly controllable accuracy, they may be difficult to 
implement and use, compared to the ordinary implementations of MLFMA.  It is therefore desirable to derive new 
methods for the diagonalization of the Green’s function.  In this work, we show that an alternative version of the 
conventional diagonalization, which involves scaled spherical functions that are more stable at low frequencies, is 
possible.  In order to use exponentials (i.e., plane-wave expansions), the new diagonalization requires an approximation 
that may limit its accuracy.  On the other hand, the proposed technique is applicable at arbitrarily low frequencies and it 
can be implemented via very minor modifications on the existing diagonalization codes.     
 
 In general, we consider an alternative diagonalization of the Green’s function as 

 
g(r, ′r ) = ik

(4π )2 d 2k̂ !β(k, k̂,v)∫  !α(k, k̂,w), (4)
                                             

 

where 

 
!β(k, k̂,v) ≈ it (2t +1)s− t jt (kv)Pt (k̂ ⋅ v̂)

t=0

τ

∑ (5)
 

and
 

 
!α(k, k̂,w) ≈ it (2t +1)stht

(1) (kw)Pt (k̂ ⋅ ŵ)
t=0

τ

∑ (6)  

are shift and translation operators, respectively.  In these operators, spherical Bessel and Hankel functions are scaled 
with a scaling factor s < 1 such that harmonic terms become numerically well balanced for small arguments.  We note 
that (4)-(6) do not involve any approximation, other than the truncations in (5) and (6).  In our implementations, where 
cubic groups with one-box-buffer scheme are used, we select s  proportional to the box size with respect to wavelength.  
In order to facilitate multiple shifts on the radiation and receiving sides, as well as between levels, we further 
approximate the shift operator as  
 

β(k, k̂,v) ≈ it (2t +1) jt (kv / s)Pt (k̂ ⋅ v̂)
t=0

τ

∑ = exp(ikk̂ ⋅v / s). (7)  



The approximation in (7) may deteriorate the controllable accuracy of the new diagonalization.  The error involved in 
this expression can be minimized by selecting  s≫ kv.   Unfortunately, the stabilization of the Hankel function in (6) 
needs  s≪ kw,  which is contradictory to the criteria for the error minimization in the shift operator.  Hence, the scaling 
factor needs to be carefully selected by considering both stabilization of the spherical functions and the exponential 
approximation of the shift operator.         
 
 

3. Numerical Examples 
 
 In order to demonstrate the stability and accuracy of the new approximate diagonalization, we consider the 
solution of a canonical scattering problem involving a sphere of radius 0.3 m at 4 MHz.  The radius of the sphere is 
approximately λ/250, and the problem is discretized with the Rao-Wilton-Glisson functions defined on 5 cm and 3 cm 
triangles, leading to matrix equations involving 1476 and 4080 unknowns, respectively.  The problem is formulated 
with the magnetic-field integral equation (MFIE) and solved iteratively using MLFMA with four and five levels, 
corresponding to two and three far-zone levels, respectively.  Based on our experiments with the scale factor (not shown 
here), the truncation number is selected as 9 at all levels.  For comparisons, the same problem is also analyzed via Mie-
series solutions and with the method of moments (MOM).  
  
 Fig. 1(a) depicts the far-zone electric field values on the z-x plane when the sphere is illuminated by a unit  plane 
wave propagating in the z direction with the electric field polarized in the x direction.  In the plot, 0 and 180 degrees 
correspond to the forward-scattering and backscattering directions, respectively.  It can be observed that computational 
values obtained with four-level and five-level MLFMA solutions (denoted by MLFMA-4 and MLFMA-5) using 5 cm 
discretization are in consistent with those obtained with Mie-series and MOM.  Backscattering values are further 
focused in the inset of Fig. 1(a), where approximately 4% error between computational and analytical solutions 
becomes visible.  The major source of this error seems to be the discretization, which can be relatively significant when 
MFIE is used.  In fact, Fig. 1(a) also shows that using a better discretization with 3 cm triangles (and a five-level 
MLFMA) reduces the error and improves the accuracy of the computational results.  As demonstrated in Fig. 1(a), the 
proposed approximate diagonalization works well, allowing MLFMA solutions of a low-frequency problem that cannot 
be handled via standard MLFMA implementations. 
  

  
(a) (b) 

Figure 1.  Far-zone electric field (V/m) scattered from a perfectly conducting sphere of radius 0.3 m at 4 MHz 
calculated by using the low-frequency MLFMA, MOM, and Mie-series solutions. 

 
 In order to show that accurate computations of far-zone interactions are very critical for accurate scattering 
computations, even when a low-frequency problem is considered, Fig. 1(b) presents the solution of the same problem 
using a five-level MLFMA, in comparison to a hypothetical solution that is based on only near-zone interactions.  
Specifically, MLFMA with the approximate diagonalization is used in the former, whereas only the interactions in the 
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sparse near-field matrix (based on the five-level tree structure) are considered in the latter.  Even though matrix 
equations derived from MFIE are dominated by the identity term that appears in the near-field matrix, Fig 1(b) clearly 
shows that far-zone interactions are required to solve the problem with a reasonable accuracy, and these interactions can 
be performed accurately using the developed diagonalization technique.     
 
 

4. Conclusion 
 
 A novel diagonalization of the Green’s function using scaled spherical functions and plane waves is presented 
for stable solutions of low-frequency problems using MLFMA.  The diagonalization is easy to implement on the 
existing MLFMA solvers, while it provides reasonably accurate solutions at arbitrarily low frequencies.  
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