Scalar and conformal Holographic Artificial Impedance Surface Antennas

Jun Ouyang*, Yuan Zhang, Yu Long, Feng Yang, Jun Hu

* School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China. Email: antenna_ou@163.com

Abstract

Three different kinds of artificial holographic impedance surface antennas are presented in this paper. The split main lobe problem of a plane surface is analyzed and overcome by introducing surface current theory. Both a conical conformal antenna and a cylindrical conformal antenna are designed to demonstrate the conformal capacities of these antennas. A spiral circularly polarized antenna is also proposed for the first time. All the analyses and simulation results have shown great prospects of artificial holographic impedance surface antennas.

1. Introduction

By combining the principle of surface impedance modulation with microwave holography, impedance surfaces that generate directive radiation patterns are theoretically designed [1-3]. In this paper, the new way of impedance modulation is proposed for the first time. We have implemented holographic antennas using modulated artificial impedance surfaces built as printed metal patterns, and have extended this concept to cylindrical and conical surfaces. This paper is structured as follow. In section 2 the split main lobe problem of a plane surface is presented and overcome by introducing surface current theory. Section 3 presents both a conical conformal antenna and a cylindrical conformal antenna. In section 4 a spiral circularly polarized antenna is proposed. The final conclusions in section 5 discuss the main work and significance.

2. Split Main Lobe Problem for Plane Surface Antennas

For scattering of a bound TM modes, the impedance modulation function derived from the holographic interference is

\[n_{\text{surf}}(X) = \Re \left[X + M \cos(\psi_{\text{surf}} - \psi_{\text{rad}}) \right] \]

where \(X \) is an arbitrary real average impedance value, \(M \) is the real modulation depth, and the quantities \(\psi_{\text{surf}} \) and \(\psi_{\text{rad}} \) are the phase information of the surface wave travelling upon the impedance surface and the desired radiating plane wave respectively.

To produce a plane wave at 45 degrees in X-Y plane, a small monopole antenna is used as the source. Taking \(\psi_{\text{surf}} \) and \(\psi_{\text{rad}} \) in (1), we get the impedance modulation pattern, and the impedance surface is constructed which is shown in Fig. 1.

![Simulated model of the antenna](image1.png)

![The 3-D radiation pattern](image2.png)

We are supposed to get the desired radiation pattern when the holographic impedance surface is excited by the corresponding surface wave produced by the monopole, i.e. the main lobe the radiation pattern should be at 45° from Z-axis in X-Y plane. The simulation results displayed in Fig. 2, however, deviate greatly from our expectations. The main lobe appears near the desired direction indeed, but yet splits into two separate parts, resulting in a zero point where there should be the peak point instead.

A reasonable explanation could be that surface current flows in reverse directions in two symmetric sections. Consider surface current consists of two orthogonal components, one in X direction and the other Y direction.
Since the impedance surface and the monopole is both symmetric about Z-X plane, the phase difference of surface current in two regions \((y > 0 \text{ and } y < 0)\) equals \(\pi\) and the distances between field points in Z-X plane and two corresponding source points on the impedance surface in two regions are identical. As a result, the phi component of the far field radiated by these two regions cancels at Z-X plane, leading to a zero point at the desired main lobe direction. Meanwhile, although the structure is not symmetric in X direction, surface current is also anti-phased in regions \(x < 0\) and \(x > 0\), which causes radiation cancellation in specific directions as well.

Fig. 3. Simulated model of the first antenna (region: \(x < 0\))

Fig. 4. Simulated radiation pattern at 17 GHz

Fig. 5. Simulated model of the second antenna (region: \(x > 0\))

Fig. 6. Simulated radiation pattern at 17 GHz

Fig. 7. Simulated model of the third antenna

Fig. 8. Simulated radiation pattern at 17 GHz

3. Conical and Cylindrical Surface Conformal Antennas

Conformal antennas for both cylindrical and conical surfaces are designed and present in this section. Unlike the impedance modulation function given by (1), in conformal situations, the coordinate we use in this function should be transformed from Cartesian coordinate to cylindrical coordinate. For a holographic artificial impedance surface antenna in any shape, (1) can be rewritten as

\[
\eta_{surf} = j \left[\hat{X} + M \cos \left(\hat{k}_s \cdot \hat{r}_d \right) \right]
\]

where \(k_i\) is the surface wave vector, \(\hat{k}_s\) is the desired radiation wave vector, \(\hat{r}_d\) is the three-dimensional
position vector of artificial impedance surface, and \(r \) is the distance between the surface-wave source point and the field point corresponding to \(\vec{r} \). In cylindrical coordinate, \(k_x, k_y \) can be written as follows:

\[
\vec{k}_0 \cdot \vec{r} = k_x \rho \frac{r_x}{\sqrt{r_x^2 + h^2}} \cos \phi + k_y \rho \frac{r_y}{\sqrt{r_y^2 + h^2}} \sin \phi + k_z \rho \frac{h}{\sqrt{r_x^2 + r_y^2 + h^2}}
\]

where \(k_x, k_y \) and \(k_z \) are the three components of radiation wave vector, \(h \) is the height of the cone, and \(r \) is bottom radius.

Fig. 9. The layout of the artificial impedance surface. Left: the planar artificial impedance surface. Right: the conical artificial impedance surface.

Take (3) into (2), and the modulated surface impedance is determined. The two impedance surface antennas are fed by a monopole antenna, and the conical conformal antennas simulation results are respectively shown in Fig. 9 and Fig. 10 from which we can see surface wave travels along the conical and cylindrical surfaces and produces radiation wave beams at the desired angels while good VSWR and gain is also achieved.

Fig. 10. Radiation pattern in X-Y plane.

A simple vertical dipole on the conical surface is used as a feeder. Simulated E-plane radiation patterns for various frequencies at 11.75 GHz, 12 GHz and 12.25 GHz. Side lobe levels are -10.4 dB, -11.8 dB and -12.1 dB.

4. Spiral Circularly-Polarized Antenna

Spiral circularly polarized artificial impedance surface antennas are designed by using the holographic technique [4]. We consider a circular surface which possesses an Archimedean spiral reactance sinusoidally modulated along the radial direction. The following expression is the analytical description of such a surface

\[
\eta_{surf}(\rho, \phi) = \frac{1}{2} \left[X + M \cos(k_x \rho - \phi) \right]
\]

where \((\rho, \phi)\) is a position on the impedance surface in the X-Y plane. The modulation periodicity along each ray is equal to \(\lambda_{sw} \), and the difference between the interception with the spiral of two rays separated by \(90^\circ \) is \(\lambda_{sw}/4 \). Any pair of elemental sectors separated by \(90^\circ \) gives rise at broadside to orthogonal and quadrature-phased components respectively.

As an example, the antenna is realized on substrate Taconic RF-60, with a dielectric constant of 6.15 and thickness of 1.27mm. Method mentioned above is used to obtain the relation between gap size and \(\eta_{surf} \). For gaps ranging from 1 mm to 0.2 mm, the effective impedance varied from 248.5j to 432.9j ohms at 12.5 GHz. The holographic antenna aperture is 243 mm × 243 mm shown in Fig.1. A vertical probe is fed by a coaxial to launch a TM_{01} surface wave. A slotted circular top hat is used to perform impedance matching and to increase the efficiency of the feeder as a surface wave launcher. Some simulated results are shown in Fig. 13 – Fig.15.
5. Conclusion

In this paper, the split main lobe problem, conformal and circularly-polarized applications of artificial modulated impedance surface antennas are discussed. Simulation models of these antennas are presented as well as the corresponding simulations results. Analyses in this paper have shown good promises of this kind of antennas in both conformal and polarization-controlling applications.

6. Reference

