Effects of Rain Area Motions and Ground Wind Velocities on Rain Attenuation Characteristics of Ku-band Satellite Signals

Yasuyuki Maekawa*1, Yutaka Inamori1, Takashi Harada1, Yoshiaki Shibagaki1

1Department of Telecommunications & Computer Network, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, Osaka 572-8530, Japan, “maekawa@maelab.osakac.ac.jp”

Abstract

Speeds and directions of the motion of rain areas that cause the attenuation of Ku-band satellite communications links are estimated from the broadcast satellite (BS) signal levels simultaneously obtained at Osaka Electro-Communication University (OECU; Neyagawa, Osaka), the Research Institute for Sustainable Humanosphere (RISH; Uji, Kyoto) and the Shigaraki MU radar observatory (Koga, Shiga) of Kyoto University. The speeds and directions of rain area motion are compared with the ground wind velocities observed by a nearby AMeDAS station from 2008 to 2011. A correlation coefficient of nearly 0.6 is found between the directions of the rain area motions and the ground wind velocities although the directions tend to be rotated slightly anti-clockwise on the ground. Thus, the AMeDAS data seems to be important to determine the direction of satellite stations when the site diversity techniques are conducted.

1. Introduction

The recent satellite communications tend to use high frequency bands of more than 10 GHz, in addition to the traditional C band of 6/4 GHz. In these higher frequency bands, however, the rain attenuation of radio waves becomes one of the severe problems of satellite communications. Thus, detailed observations and statistical analyses of rain attenuation characteristics are necessary for reliable operations of satellite communication links [1]. In this study, Ku-band satellite signal levels have been simultaneously observed at Osaka Electro-Communication University (OECU, Neyagawa, Osaka), the Research Institute for Sustainable Humanosphere (Uji, Kyoto) and the Shigaraki MU radar observatory (Koga, Shiga) of Kyoto University since September 2002 [2]. The direction and speed of rain area motions are estimated from the time differences in the attenuation detected at these three locations, and compared with the wind direction and speed measured by the AMeDAS located at a nearby station (Kyotanabe, Kyoto) on the ground during the four years from 2008 to 2011.

2. Measurement Systems

At the three stations, the Ku-band broadcasting satellite (BS) signals (11.8GHz, RHCP, EL=41 deg) have been continuously observed. At RISH in Uji, however, the Ku-band down-link signal (12.7GHz, HP, EL=49 deg) of Superbird C that connects RISH to the Equatorial Atmosphere Radar (EAR) had been observed instead of the BS signal up to July 2005. These signal levels are recorded by personal computers equipped with 16 bit AD converters. For the estimation of attenuation and its statistics, the observed data are further averaged over 1 min. RISH in Uji, Kyoto is located 23.3 km northwest (16.0 km, 16.9 km) from OECU in Neyagawa, Osaka, while MU in Koga, Shiga is located 45.9 km east northeast (44.2 km, 12.4 km) from OECU. The geographical relationship among the three locations is shown in Fig.1.

To infer the direction and speed of rain area motion over these three locations, the time series of rain attenuation measured at each station are compared at 1 min interval in every rainfall event. The time difference of attenuation occurrence is estimated from the peak of the cross-correlation function calculated between each combination of the two among the three locations. These rain area motions inferred from the time difference of the attenuation occurrence are proved to agree well with those of the passage direction and speed perpendicular to the rain fronts on weather charts published by Japan Meteorological Agency at three or 12 hour intervals [2]. Also, these rain area
motions, as a whole, agree with wind direction and speed actually measured by the MU radar (Koga, Shiga) in the upper air at 2-6 km height [3].

AMeDAS (Automated Meteorological Data Acquisition System) is a high-resolution surface observation network developed by Japan Meteorological Agency, being primarily used for gathering regional weather data and verifying forecast performance all over Japan. It started operation in November 1974, and now consists of about 1300 stations with automatic observation equipment for such as rainfall rate, air temperature, wind direction and speed. These stations are located at an average interval of 17 km throughout Japan, and the automatic observations are basically conducted at 10 min intervals. In this study, we use the wind direction and speed data that has been observed by the AMeDAS located in Kyotanabe city about 14 km north-east from our university (OECU). This AMeDAS station is just located within the triangle made by the three observation points of the BS signal, as shown in Fig.1. The data are published in the web site at one hour interval, and we averaged these values for 2-6 hours according to the duration time of each rainfall event.

Figure 1. Three observational locations of the BS signal at OECU, RISH, and MU, together with AMeDAS

3. Observational Results

Figure 2 shows an example of rain attenuation observed at the three locations on September 12, 2009. In Fig. 2(a), we can see that the attenuation of 6-18 dB occurred during 14:50-15:40 LT at each location in order of OECU (dashed line), RISH (thin line), and MU (thick line). In Fig. 2(b), cross-correlation functions of the rain attenuation are then calculated between OECU and the other locations. The thick line indicates the result obtained from the combination of OECU and MU, while the thin line is that of OECU and RISH, for the lag times from -60 to 60 min. The correlation values of 0.8-0.9 are found in the peaks of both cross-correlation functions. The lag times obtained from these peaks indicates that the attenuation, on an average, occurred 10 min later (+10 min) at RISH and 33 min later (+33 min) at MU, respectively, than at OECU. These high correlation values of 0.8-0.9 suggest that the three locations should observe the attenuation caused by rain bands or rain cells of the same rain front passing over them. Fig.2(c) thus shows speed and direction (arrow) of the rain area estimated from the time differences in attenuation occurrence among the three locations, as well as their geographical relationship with OECU. Thin and thick dashed lines indicate the positions of the rain front inferred at RISH and MU, respectively, which passed over them in this order. The rain area associated with the front is shown to move nearly eastward at a speed of 20.7 m/s. The direction of the motion is 101.1 degree clockwise from the north.
Next, Figure 3 indicates directions and speeds of (a) rain area motions inferred from the BS signal observations at the three locations and (b) ground wind velocities measured by the nearby AMeDAS station during the four years from 2008 to 2011. Also, Fig.3 (c) depicts scatter plots of the directions of the ground wind velocities against the rain area motions obtained in the same period. It is found from Fig.3 (a) and (b) that the rain area motions show fairly large speeds from 5 to 30 m/s, while the ground wind speed rarely exceeds 5 m/s, being nearly one order smaller than those of the rain area motions[4]. The direction of both rain area motions and ground wind velocities are, however, found to be distributed in similar range from northwest to southeast, although the directions of ground wind tend to turn anti-clock wise compared to those of the rain area motions. Moreover, we can find considerable correlations between their directions. The relation coefficient is about 0.6. So, there is a possibility that we can estimate rain area motions in the upper air from ground wind velocities which can be easily obtained from usual routine meteorological measurements, such as AMeDAS. Especially, the direction of rain area motions as regards the alignment of two sites for space diversity was shown to be very important by our previous study [2]. Therefore, the methods to infer the rain area motion in the upper air from the ground wind velocities may have a large impact on the effects of the site diversity techniques for rain attenuation mitigation.

4. Conclusions

The direction and speed of rain area motions are estimated from the time differences in the Ku-band satellite signal attenuation detected at the three locations of Osaka Electro-Communication University (OECU, Neyagawa, Osaka), the Research Institute for Sustainable Humanosphere (Uji, Kyoto), and the Shigaraki MU radar observatory (Koga,
Shiga) of Kyoto University. The direction and speed of the rain areas are compared with those of the ground wind velocities observed by AMeDAS at the nearby station about 14 km north-east from OECU during the year from 2008 to 2011. Although the their data points are largely scattered in the scatter plots between them, considerable correlations are still found between the rain area motions and the ground wind velocities, suggesting that the direction and speed of the rain areas which is important to site diversity techniques may be easily estimated from the ground wind velocity measurements such as AMeDAS. In the future, further observations of rain area motions and ground wind velocities are needed, and comparison of their directions and speeds should be made with much more examples of longer observational years. Also, direct measurements of upper air motions using the MU radar and other wind profiler networks around the three observational locations are highly desired, to investigate the relationship between rain area motions and wind velocities from the ground to rain height in more detail.

Acknowledgments

The authors deeply thank the staff of the Shigaraki MU radar observatory who assists the measurements in this study.

References