Application of FEM-BIE for Scattering from Dielectric Objects Buried under a Rough Surface

Runwen Xu*, and Lixin Guo

School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, China (e-mail: rwxu719@126.com)

Abstract

This paper presents a hybrid method combining the finite element method (FEM) with the boundary integral equation (BIE) for two dimensional (2D) scattering from dielectric objects buried under the rough surface. In the hybrid method, one boundary integral equation is adopt to depict the scattering above the rough surface on the basis of Green’s function. Based on the domain decomposition technique, the computational region below the rough ground is divided into multiple isolated interior regions containing each object and the exterior region. Finite element formulations are only applied inside interior regions to derive a set of linear systems, and another boundary integral formula is developed below the rough surface which also act as the boundary constraints of the FEM regions. Compared with traditional FEM based on perfectly matched layer (PML), the hybrid technique presented here is highly efficient in terms of computational memory, time, and versatility.

1. Introduction

The finite element method (FEM) is used extensively to perform electromagnetic modeling, because it is efficient in modeling the scattering geometries which are both penetrable and inhomogeneous. In the application of FEM, the approximate absorbing boundaries, such as the absorbing boundary conditions (ABC) [1, 2] and perfectly matched layer (PML) [3, 4], are usually used as the constrained boundary. However, the approximate absorbing boundaries often need to be set far enough away from the model surface to keep their precision, and are often invalid to some particular problems. To improve the precision and the versatile of FEM, the boundary integral equation [5, 6] is introduce as the artificial truncated boundary. The earlier work based on FEM always used an artificial boundary to enclose the whole scattering model, which consumes largely of computational time and memory. In this paper, a hybrid method combining FEM with boundary integral equation (FEM-BIE) is extended to the simulations of the scattering from dielectric objects buried beneath the rough surface. Here, FEM is applied only inside the interior regions, while another boundary integral equation is applied in the exterior region. On the artificial boundaries between the interior region and the exterior region, the equations of different domains are coupled by the continuous boundary conditions. The hybrid algorithm presented here shows effectiveness and efficiency in terms of computing resources, computational time, and versatile applications.

2. Theoretical analysis

Figure 1 shows multiple objects with an arbitrary shape are buried under the dielectric rough surface. Φ^{inc} represent the incident wave, which impinges on the composite model with a incidence angle θ^{inc} and is scatted with a scattering angle θ^{scat}. The symbol \hat{n} is the unit normal vector on the artificial boundaries. Γ_o are the boundaries of the objects, while Γ_s denotes the truncated part of the rough surface. The interior region Ω^o is defined as the region of the objects, and each subdomain of Ω^o is expressed by Ω^s. Ω^+ and Ω^- shows the region above the rough surface and the region below the rough surface, respectively. For the region Ω^s of each dielectric object, the boundary Γ_o is also applied as the truncated boundary of FEM region.
The incident wave E^{inc} is assumed to be invariant along the z axis, and therefore the electric field of the wave only has the component of E_z, denoted by Φ. Above the rough surface, the electric field satisfied the Helmholtz equation (a time factor e^{iat} has been assumed and suppressed), which can be written as

$$V^2\Phi (r) + k_s^2\Phi (r) = f (r)$$ \hspace{1cm} (1)

where $\Phi (r)$ denotes E_z, k_s is the wavenumber of the space, $f (r)$ relates to the current J_z in the space and $f (r) = jk_s\eta J_z (r)$, η is the characteristic impedance.

Due to the infinite length of the rough surface, it needs to be truncated into a limited length in our simulation. This can introduce the artificial truncated effect at the ends of the rough surface. To reduce this effect, the tapered incident wave is chose as the incident wave which decreases to a very small value at the ends of the rough surface. The form of the incident wave [7] can be expressed as

$$\Phi^{inc} (r) = \exp [i(k \cdot r + w(r)) \cdot \exp \left[-i (x - y \cot \theta_{inc})^2 / g^2 \right]$$

where $w(r) = \frac{1}{2} \left[(x - y \cot \theta_{inc})^2 / g^2 - 1 - \sin \theta_{inc} \right] / (k g \sin \theta_{inc})$, k is vector of the wavenumber in the space, g is the tapered factor, and r is the position vector.

In domain Ω_s, we introduce the free space Green's function. It satisfies the Sommerfeld radiation condition at infinity and the following differential equation

$$V^2 G_s (r,r') + k_s^2 G_s (r,r') = -\delta (r-r')$$ \hspace{1cm} (3)

The Green’s function of the free space $G_s (r,r')$ can be easily found to be the zeroth-order Hankel function of the second kind written as

$$G_s (r,r') = \frac{1}{4\pi} H_0^0 (k_s \|r-r\|)$$ \hspace{1cm} (4)

Multiply Eq. (1) with G_s, integrating over Ω_s, and invoking the second Green's scalar theorem

$$\Phi_{\Gamma_s} (r) = \int_{\Gamma_s} \left[\Phi (r') \frac{\partial G_s (r,r')}{\partial n} - G_s (r,r') \frac{\partial \Phi (r')}{\partial n} \right] d\Gamma' + \Phi^{inc} (r)$$

where $\Phi^{inc} = -\int_{\Gamma_s} [G_s (r,r') f (r')] d\Gamma'$, Γ_s is the truncated domain of the rough surface (+ denotes the side of the rough surface in domain Ω_s. On the infinite boundary above the rough surface, both $\Phi (r)$ and $G_s (r,r')$ satisfy the Sommerfeld radiation conditions, while the incident field on the parts of the rough surface which overflow from Γ_s are almost zero due to the adoption of the tapered incident wave. So only the boundary integral on Γ_s remains in Eq. (5).

In the region Ω_s, the Helmholtz equation is still be satisfied

$$V^2 \Phi (r) + k_s^2 \Phi (r) = 0$$

where k_s is the wave number of Ω_s. The Green's function $G_s (r,r')$ is introduce in region Ω_s, and it also satisfies the Sommerfeld radiation condition at infinity and the following differential equation

$$V^2 G_s (r,r') + k_s^2 G_s (r,r') = -\delta (r-r')$$

in which $G_s (r,r')$ is the zeroth-order Hankel function of the second kind written as

$$G_s (r,r') = \frac{1}{4\pi} H_0^0 (k_s \|r-r\|)$$

As the deduction of Eq. (5), the integral equation of Ω_s can be yield as

$$\Phi_{\Gamma_s} = \int_{\Gamma_s} \left[\Phi (r') \frac{\partial G_s (r,r')}{\partial n} - G_s (r,r') \frac{\partial \Phi (r')}{\partial n} \right] d\Gamma' + \sum_{i=1}^{n} \int_{\Gamma_{oi}} \left[\Phi (r') \frac{\partial G_s (r,r')}{\partial n_{oi}} - G_s (r,r') \frac{\partial \Phi (r')}{\partial n_{oi}} \right] d\Gamma'$$

where Γ_{s-i} is the truncated domain of the rough surface (- denotes the side of the rough surface in domain Ω_s, and Γ_{oi} is boundaries of the ith subdomain of the object.

On the artificial surfaces of Ω_s, the boundary conditions can be assumed as follows for simplification:

$$\frac{\partial \Phi}{\mu_s \partial n} = -\gamma$$

As shown in Figure 1, the whole computed space in Ω_s is separated into many isolate interior subdomains. The field in every interior subdomain of the objects can be formulated into an equivalent variational problem [8], whose equivalent variational problem can be given by
For every computed subdomain Ω_ν, the form of $F(\Phi)$ can be expressed as

$$ F_\nu(\Phi) = \frac{1}{2} \left[\int_{\Omega_\nu} \left(\frac{1}{\mu_x} \left(\frac{\partial \Phi}{\partial x} \right) \right)^2 + \frac{1}{\mu_y} \left(\frac{\partial \Phi}{\partial y} \right)^2 \right] - k_0^2 \varepsilon_r \Phi^2 \, d\Omega + \int_{\Gamma_\nu} \Phi \Psi \, d\Gamma. $$

where Ω_ν and Γ_ν are the interior domains and boundaries of the i th subdomain respectively, o denotes the subdomain of the target. Scattered fields in the subdomains $\Omega_1, \Omega_2, \cdots, \Omega_{(n-1)}, \text{ and } \Omega_n$ can be calculated by the finite element method.

3. Numerical Results and Discussion

In this section, numerical results are presented for two objects buried beneath the rough ground. The truncated length of the rough ground is $L_g = 25.6 \lambda$. A carefully tapered incident beam with $g = L_g / 4$ is used for excitation to eliminate the effects of the artificial edges of the modeled ground. The ground surface is characterized with Gaussian statistics, whose power spectrum function $S(k)$ can be written as

$$ S(k) = \frac{\delta^2}{2\sqrt{\pi}} \exp(-k^2 \ell^2 / 4) $$

where δ denotes the root mean square, ℓ represents the correlation length.

![Figure 2. Scattering from two dielectric square cylinders buried under a Gaussian rough ground: (a) the absolute value of the field; (b) BSC](image1.png)

![Figure 3. Scattering from three dielectric circular cylinders buried under a Gaussian rough ground: (a) the absolute value of the field; (b) BSC](image2.png)
dielectric objects buried under the ground is shown in Figure 2 (b). It can be seen from Figure 2 (a) and (b) that two method agree with each other very well.

Considering three circular cylinders buried under the Gaussian rough surface in Figure 3, three cylinders of radius \(r = 0.6\lambda \) are located at depth \(d = 1.5\lambda \) under the ground surface. The relative dielectric constant of the ground is assumed to be \(\varepsilon_r = 2.5 - j0.18 \). Two objects are located at \((2.5\lambda, -1.5\lambda), (0, -1.5\lambda)\) and \((-2.5\lambda, -1.5\lambda)\). All of objects are assumed to have the same material \((\varepsilon_r = 3.5 - j0.05)\). The tapered incident wave impinges the model with an incident angle \(\theta_{inc} = 90^\circ \). The root mean square of the rough ground is \(\sigma = 0.05\lambda \), and the correlation length is \(l = 0.8\lambda \).

Figure 3 shows numerical comparisons of the total electric field and BSC between different methods. The well matched results in two simulations guarantee a feasibility of the hybrid FEM-BIE again.

4. Conclusion

In this work, an efficient hybrid method combining FEM with BIE is developed, and the scattering from multiple objects buried beneath a rough surface is investigated. Compared with the published papers based on FEM employing ABC or PML, there is no need to fully enclose the scattering geometry in hybrid FEM-BIE to truncate the solution region. In our hybrid method, only the dielectric target need to be dealt with FEM, while BIE is applied to analyze the scattering from the rough surface. The interactions between the object and rough surface are taken into account by boundary integral equations. The scattering properties of two different objects buried under the ground is discussed in detail based on hybrid method. If combining FEM-BIE with the parallel technology or the optimization of the sparse matrix storage method, the hybrid method can be expected to get a more efficient result. In the future, most work will be focused on the application of hybrid FEM-BIE for a three-dimensional (3D) scattering problem and the accelerated treatment on the hybrid method.

5. Acknowledgments

This work was supported by the National Science Foundation for Distinguished Young Scholars of China under Grant number 61225002; and Fundamental Research Funds for the Central Universities under Grant number K50510070001.

6. References

