Nanosecond (Gigahertz) and Microsecond (Megahertz) Pulsed Electric Field Interactions with Cell Membranes

P. Thomas Vernier

1Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, U.S.A., vernier@usc.edu

Abstract

High-intensity nanosecond pulsed electric fields permeabilize cell membranes, restructure phospholipid bilayers, cause intracellular calcium release, depolarize mitochondrial membranes, and induce apoptosis. Molecular simulations reveal the mechanism for the electric field-driven reorganization of phospholipid head groups and water molecules that results in the formation of membrane-spanning water bridges and conductive pores. Progress has been made in taking nanosecond electric pulses to the clinic for the treatment of skin cancers and other lesions, but a deeper understanding of the underlying biophysical phenomena will facilitate the application of this technology in cancer therapeutics through non-thermal, minimally scarring tumor ablation.