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Abstract

Pulsed radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is studied. An
expression for the radiated energy is derived and its distribution over the spatial and frequency spectra of the excited
waves as a function of the source and duct parameters is analyzed. Numerical results referring to the case where the
frequency spectrum of the current is concentrated in the whistler range are reported. It is shown that under ionospheric
conditions, the presence of an artificial duct with enhanced density can lead to a significant increase in the energy
radiated from a pulsed loop antenna compared with the case where the same source is immersed in the surrounding
uniform magnetoplasma.

1. Introduction

Electromagnetic radiation from monochromatic sources immersed in homogeneous and inhomogeneous mag-
netized plasmas has received much careful study and there are many accounts of it (see, e.g., [1, 2] and references
therein). Over the past decade, there has been shown a substantial degree of interest in the excitation and propaga-
tion of nonmonochromatic signals in a magnetoplasma [3–5]. This interest has been motivated by the importance
of transient phenomena for propagation of electromagnetic waves through the magnetosphere and the ionosphere,
as well as for plasma diagnostics using pulsed signals launched from antennas on spacecraft. Much previous theo-
retical work on the subject is focused on studying the fields and radiation characteristics of pulsed sources emitting
electromagnetic waves to a homogeneous magnetoplasma [5]. However, there exists a very little theory of the radi-
ation from nonmonochromatic sources located in cylindrical magnetic-field-aligned density irregularities, commonly
known as density ducts. Note that such ducts can arise due to various nonlinear effects near electromagnetic sources
in a magnetoplasma and are capable of guiding whistler-range waves, which play an important role in many promising
applications.

It is the purpose of the present paper to discuss energy characteristics of the radiation from a pulsed loop
antenna located in an enhanced-density duct that is surrounded by a uniform cold magnetoplasma such as exists in the
Earth’s ionosphere. The emphasis will be placed on the case where the frequency spectrum of the antenna current is
concentrated in the whistler range.

2. Formulation of the Problem and Basic Equations

We consider a circular loop antenna placed coaxially in a cylindrical duct of radius a. The duct is aligned with
the z axis of a cylindrical coordinate system (ρ, φ, z). Parallel to this axis is a uniform dc magnetic fieldB0 = B0ẑ0.
The plasma density is equal to Ñ inside the duct, and to Na in the ambient uniform plasma surrounding the duct. The
electric current density of the antenna is specified as

J(r, t) = φ̂0I0δ(ρ− b)δ(z)χ(t), (1)

where I0 is the amplitude of total current, b is the antenna radius (b < a), δ is a Dirac function, and χ(t) is a
dimensionless function describing the current behavior in time. The function χ(t) has the maximum value equal to
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unity and is assumed nonzero in the time interval 0 < t < τ , where τ is the current pulse duration, which in principle
can be infinitely long. The plasma is described by the permittivity tensor ε = ερ̂0ρ̂0 + igρ̂0φ̂0 − igφ̂0ρ̂0 + εφ̂0φ̂0 +
ηẑ0ẑ0. Expressions for the elements of the tensor ε can be found elsewhere [2].

The total energy W radiated from a current J(r, t) with duration τ is obtained as

W = −
∫ τ

0

dt

∫
V

J(r, t) ·E(r, t)dr, (2)

where integration with respect to the spatial coordinates is performed over the volume V occupied by the source
current, and E(r, t) is the electric field excited by the source. To evaluate W , we need to express E(r, t) in terms of
the source current. To do this, it is convenient to use the Laplace transforms of these quantities as functions of time.
Throughout this paper, we use the following convention for the definition of Laplace and inverse Laplace transforms:

f(ω) =
∫ ∞

0

f(t) exp(−iωt)dt, Imω = −σ < 0, σ = const; f(t) =
1

2π

∫ −iσ+∞

−iσ−∞
f(ω) exp(iωt)dω. (3)

For a source with current (1), only the azimuthal electric-field component Eφ(r, t) is required to evaluate W . It can
be shown that the Laplace-transformed quantity Eφ(r, ω) is given by the formula [2]

Eφ(r, ω) =
∑
n

as,n(ω)Eφ;s,n(ρ, ω) exp(−ihs,nz) +
∑
α

∫ ∞
0

as,α(k⊥, ω)Eφ;s,α(ρ, k⊥, ω) exp(−ihs,αz)dk⊥, (4)

where Eφ;s,n(ρ, ω) and Eφ;s,α(ρ, k⊥, ω) are the azimuthal components of the vector wave functions describing the
radial distribution of the electric fields of eigenmodes (discrete-spectrum waves) and continuous-spectrum waves of the
duct, respectively, at a fixed frequency ω; as,n(ω) and as,α(k⊥, ω) are the excitation coefficients of the corresponding
waves; n is the eigenmode radial index (n = 0, 1, . . .); hs,n is the longitudinal wave number of an eigenmode with the
index n; k⊥ is the transverse (with respect toB0) wave number in the ambient uniform magnetoplasma; the functions
hs,α(k⊥, ω) stand for the longitudinal wave numbers of the ordinary (α = o ) and extraordinary (α = e) waves of the
ambient magnetoplasma; and the subscript s designates the wave propagation direction (s = + and s = − correspond
to waves propagating in the positive and negative directions of the z axis, respectively). Expressions for hs,α(k⊥, ω),
as well as for the vector functions describing the fields of the discrete- and continuous-spectrum waves are given in [2].

Using the well-known technique developed for finding the excitation coefficients of open guiding systems in a
magnetoplasma [2], we can write

a±,n(ω) = 2πbI0χ(ω)N−1
n (ω)E(T)

φ;∓,n(b, ω), a±,α(k⊥, ω) = 2πbI0χ(ω)N−1
α (k⊥, ω)E(T)

φ;∓,α(b, k⊥, ω). (5)

Here, χ(ω) is the Laplace transform of the source function χ(t), the superscript (T) denotes fields taken in a medium
described by the transposed dielectric tensor εT, and Nn(ω) and Nα(k⊥, ω) are the normalization quantities that are
deduced from the orthogonality relations for the discrete- and continuous-spectrum waves (see [2] for details).

Substituting the inverse Laplace transform ofEφ(r, ω) into formula (2) and performing integration with respect
to the spatial coordinates and time, we obtain

W = −I0b
∫ −iσ+∞

−iσ−∞
dω χ(−ω)Eφ(r, ω)|ρ=b, z=0 . (6)

The integration path in (6) is symmetric about the imaginary ω axis. Passing to integration over the right-hand part of
this path, for which Reω > 0, and then making the limiting transition σ → 0, we get the resulting expression

W =
∫ ∞

0

dω (−I2
0 )4πb2χ(−ω)χ(ω)Re

[∑
n

N−1
n (ω)E(T)

φ;−s,n(b, ω)Eφ;s,n(b, ω)

+
∑
α

∫ ∞
0

N−1
α (k⊥, ω)E(T)

φ;−s,α(b, k⊥, ω)Eφ;s,α(b, k⊥, ω)dk⊥

]
. (7)



Note that only the regions of integration over positive k⊥ values for which the functions hs,α are purely real make
nonzero contributions, along with the propagated eigenmodes, to the radiated energy W given by formula (7).

We first examine the case where the temporal behavior of the source current is taken as a pulse whose filling
comprises a few half-periods of a monochromatic oscillation:

χ(t) = sin(ω0t)[H(t)−H(t− τ)]. (8)

Here, H(t) is a Heaviside step function, τ = kT/2 = πk/ω0 is the signal duration (k = 1, 2, . . .), and ω0 is the
frequency corresponding to a given period T = 2π/ω0. In addition, we will also discuss the case of a single current
pulse without modulation:

χ(t) = (t/t0) exp[−(t− t0)/t0]. (9)

Since the current pulse described by (9) for t0 = T/4 ≡ π/2ω0 and that described by (8) for k = 1 are similar in
shape, it is instructive to compare the radiation characteristics of the antenna for both signals.

3. Numerical Results

The quantity W was evaluated numerically for plasma parameters chosen to be typical of the Earth’s iono-
sphere: the ambient plasma density Na = 106 cm−3 and the external static magnetic field B0 = 0.5 G. With these
values, the ambient plasma had the electron plasma frequency ωp = 5.6 × 107 s−1, the electron gyrofrequency
ωH = 8.8 × 106 s−1, and the effective ion gyrofrequency ΩH = 200 s−1. It was assumed that the source radius
b = 2.5 m, the duct radius a = 5 m, and Ñ > Na. In the case where the source function χ(t) is described by formula
(8), we choose the parameter ω0 such as to satisfy the condition ωLH < ω0 � ωH , which corresponds to the resonant
part of the whistler range. Here, ωLH = (ωHΩH)1/2 is the lower hybrid frequency. Calculations show that in this
case, the dominant contribution to the radiated energy is ensured by slightly leaky modes, which can be separated
from the α = e term in (7), rather than by other terms, including a single axisymmetric eigenmode of the surface type
with the index n = 0, which is supported by such a duct. The leaky modes have complex longitudinal wave numbers
h = k0(p′ − ip′′), where k0 is the wave number in free space, and are separated by appropriately deforming the path
of integration over k⊥ in (7) [2]. Their contributions to the expression under the sign of the integral over ω in (7) will
be denoted as wν(ω), where ν is the leaky-mode radial index (ν = 1, 2, . . . ).

As an example, Fig. 1(a) shows the normalized (to I2
0 ) contributionswν(ω) of the leaky modes to the frequency

spectrum of the energy radiated from the source with time dependence (8) for ω0 = 1.9 × 105 s−1, k = 5, and
Ñ/Na = 30. Note that the projections of the diagrams in Fig. 1(a) onto the horizontal plane represent the dependences
of the leaky-mode normalized propagation constants p′ on the frequency ω. Note that the dependences p′(ω) for the
dominant modes lie between the lower boundary p = 2ω̃p/ωH and the upper boundary p = ω̃p/[ω(ωH−ω)]1/2, which
are shown by the red lines in Fig. 1(a). Here, ω̃p is the electron plasma frequency corresponding to the plasma density
Ñ inside the duct. Results of numerical calculations of the total energy radiated from the loop antenna are shown in
Fig. 1(b) for the previously chosen values of ωp , ωH , ΩH , a, and b. The closed circles in the figure indicate the total
energy radiated from the source with time dependence (8) for ω0 = 1.9 × 105 s−1 and various values of Ñ/Na and
k = τω0/π. For comparison, the values of the energy radiated from the source having time dependence (9) with
t0 = π/2ω0 are shown by the closed red squares in the figure. The open circles and the open square in Fig. 1(b) show
the radiated energy when the loop antenna with the corresponding time dependences of the current is immersed in the
surrounding uniform magnetoplasma.

It follows from Fig. 1(b) that the presence of a duct with enhanced density can lead to a significant increase
in the energy radiated from a pulsed loop antenna compared with the case where the same source is immersed in
the surrounding uniform magnetoplasma. Another important implication of the numerical results is that the radiated
energy in the case where the current pulse is described by (8) obeys the relation W = P radτ with a fairly good
accuracy. Here, P rad is the time-averaged power radiated from the source possessing a time-harmonic current with
the frequency ω0. It is important that such behavior is observed for the current containing even a few half-periods of
a monochromatic oscillation, when the parameter k is moderately small, and is related to the features of excitation of
whistler-mode waves by the loop antenna in a magnetoplasma. As the characteristic frequency ω0 is increased, while
remaining in the resonant part of the whistler range, the energy spectrum becomes wider and the marks representing



the radiated energy approach the dependence W = P radτ for higher values of k. Nevertheless, the resonant part of
the whistler range continues to give the predominant contribution to the radiation until the source spectrum is located
in the frequency region below the electron gyrofrequency.

Figure 1. (a) Leaky-mode contributions to the frequency spectrum of the energy radiated from source (8) for Ñ/Na = 30
and k = 5, and (b) the total radiated energy as a function of the signal duration for Ñ/Na = 30, Ñ/Na = 10, and
Ñ/Na = 1 (families of symbols labeled 1, 2, and 3, respectively; see text for discussion).

4. Conclusion

In this paper, we have studied the radiation characteristics of a pulsed loop antenna located in an enhanced-
density duct in a magnetoplasma modeled upon the Earth’s ionosphere. A notable increase in the energy radiated from
such an antenna has been found to occur in the whistler range due to the presence of the duct. It has been shown that the
radiated energy of a loop antenna whose current pulse contains only a few half-periods of a monochromatic oscillation
with the frequency lying in the resonant part of the whistler range is very close to the product of the current duration
by the time-averaged radiated power of the corresponding monochromatic source. In addition, conditions have been
determined under which the radiation characteristics of the loop antenna with one half-period of a monochromatic
current and those of the same source with a realistic-shape single current pulse of comparable duration are very close.
The results obtained can be useful for explanations of the data of space and laboratory experiments on whistler wave
excitation by pulsed sources in a magnetoplasma containing artificial field-aligned density irregularities.
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