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Abstract

In real space plasmas, there exist random spatial variations of the plasma density as well as regular variations.
The random density profile can affect the behaviors of resonance and wave propagation. In this paper, we
investigate how the mode conversion from electromagnetic waves into electrostatic modes in a stratified
unmagnetized plasma is affected by random density variations superimposed to the linear profile near the
resonance. We obtain a surprising result that mode conversion is substantially enhanced in the presence of
weak randomness. We interpret this result in terms of the enhancement of tunneling due to weak randomness.

1 Introduction

The simplest kind of mode conversion, which is the conversion of electromagnetic waves into electrostatic
modes in cold, unmagnetized and stratified plasmas has been studied extensively for a long time [1-4]. In
real space plasmas, it is reasonable to consider the plasma density with random spatial variations. In 1958,
Anderson proposed for the first time that waves in random media cannot be extended over entire region but
are localized when randomness is sufficiently strong [5,6]. This concept can also be applied to electromagnetic
waves interacting with plasmas with a random distribution of the electron density. In the present work, we
investigate the influence of randomness on mode conversion phenomena theoretically. We use the invariant
imbedding method developed by two of us previously and calculate the mode conversion coefficient and the
field distribution in a numerically exact manner [7,8]. We find a surprising result that mode conversion is
substantially enhanced by weak randomness.

2 Theory

We assume that a plane wave of unit magnitude H̃(x, z) = H(z)eiqx = eip(L−z)+iqx is incident on a
stratified plasma from the region where z > L and transmitted to the region where z < 0. When the vacuum
wave number is k0 (= ω/c) and the incident angle is θ, the z and x components of the wave vector are
expressed as p =

√
ϵ1k0 cos θ and q =

√
ϵ1k0 cos θ respectively, where ϵ1 is the dielectric permittivity in the

incident region. In cold, unmagnetized plasmas, the mode conversion occurs only for p waves. Then the
complex amplitude of the magnetic field H satisfies

d2H(z)

dz2
− 1

ϵ(z)

dϵ(z)

dz

dH(z)

dz
+ [k20ϵ(z)− q2]H(z) = 0. (1)

The field outside the inhomogeneous medium defines the reflection and transmission coefficients r and t as
follows:

H̃(x, z) =

{
eip(L−z)+iqx + r(L)eip(z−L)+iqx, if z ≥ L

t(L)e−ip′z+iqx, if z ≤ 0
. (2)

The dielectric permittivity ϵ inside the plasma is given by

ϵ(z) = 1− ωp
2

ω(ω + iγ)
, ωp

2 =
4πe2

m
n(z), (3)

where ωp is the electron plasma frequency and n(z) is the electron density. γ is the phenomenological
damping parameter and e and m are the electron charge and mass.
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We introduce dimensionless quantities ζ = k0Λ, z̃ = z/Λ and L̃ = L/Λ, where Λ is a parameter defining
the length scale. The averaged electron density increases linearly from z̃ = L̃ to z̃ = 0

n(z) = n0

[
1− z̃ + L̃/2−G(z̃)

]
, (4)

where G(z̃) is a random function the value of which is uniformly distributed in the range [−g, g]. Then the
dielectric permittivity is given by

ϵ(z̃) =


L̃/2, if z̃ > L̃

z̃ − L̃/2 +G(z̃) + iη, if 0 ≤ z̃ ≤ L̃

−L̃/2, if z̃ < 0

. (5)

The frequency of the incident wave is fixed to ω0 =
√
4πn0e2/m.

In order to calculate the magnetic field distribution and the wave reflectance, we use the invariant
imbedding methods, the main idea of which is to transform the boundary value problem of the second-order
differential equation into the initial value problem of coupled first-order ordinary differential equations. The
field amplitude H and the reflection coefficient r satisfy the invariant imbedding equations [7,8]

∂H(z, l)

∂l
= i

√
ϵ1k0 cos θ

{
ϵ(l)

ϵ1
− 1

2

[
ϵ(l)

ϵ1
− 1

] [
1− ϵ1

ϵ(l)
tan2 θ

]
[1 + r(l)]

}
H(z, l), (6)

dr(l)

dl
= 2i

√
ϵ1k0 cos θ

ϵ(l)

ϵ1
r(l)− i

2

√
ϵ1k0 cos θ

[
ϵ(l)

ϵ1
− 1

] [
1− ϵ1

ϵ(l)
tan2 θ

]
[1 + r(l)]2.

These are integrated using the initial conditions for r and H. The initial condition for r is obtained from
the Fresnel’s formula

r(0) =
ϵ2
√
ϵ1 cos θ − ϵ1

√
ϵ2 − ϵ1 sin

2 θ

ϵ2
√
ϵ1 cos θ + ϵ1

√
ϵ2 − ϵ1 sin

2 θ
, (7)

where ϵ2 is the dielectric permittivity in the transmitted region. The initial condition for H is H(z, z) =
1 + r(z).

When integrating the invariant imbedding equations, we need the randomly of the electron density
described by G(z̃). We generate this function using a random number generating function R(s) in the IMSL
library

G(z̃) = 2g′
{
[R(s+ 1)−R(s)]

[
z̃ − (s− 1)∆z̃

∆z̃

]
+R(s)

}
− g′, (8)

where g′ = g(L̃/2) and s = Int(z̃/∆z̃) + 1. We divided the inhomogeneous region in equal intervals equal
to ∆z̃. We set ∆z̃ = 0.01 in all calculations. When g is 0.1, the fluctuation is from −0.1 to 0.1 with the
average equal to zero. R(s) ranges from 0 to 1 for each s.

3 Results

When we solve the invariant imbedding equations for a given configuration of G, we obtain one set of
data. We have repeated this calculation for many different random configurations and averaged the results.
If there is no randomness in the electron density, we recover the results obtained previously. On the other
hand, it is demonstrated in Fig. 1 that the mode conversion coefficient A (= 1−|r|2) increases as g increases
from 0.01 to 0.06, but decreases after g is over about 0.06. In this calculation, we have used the values
ζ = 20, L̃ = 20 and η = 10−8. The initial increase is partly due to that the tunneling of electromagnetic
waves from the cutoff to the resonance point is enhanced by weak randomness in the tunneling barrier and
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Fig. 1: Mode conversion coefficient A versus incident angle for disorder strength g = 0.01, 0.03, 0.06, 0.1,
0.15, 0.2, when ζ = 20, L̃ = 20 and η = 10−8. The data are obtained by averaging over 40 random
configurations for each g.
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Fig. 2: Averaged field intensity |H|2 versus z̃ when ζ = 20, L̃ = 20 and η = 10−8. The figure (a) represents
weak disorder and large mode conversion and the figure (b) represents strong disorder and small mode
conversion. This data are obtained by averaging over 40 configurations.



partly due to the fluctuation of the rate of the density variation at the resonance point. The subsequent
decrease is caused by Anderson localization effects.

When randomness is strong, a well-known theoretical result states that the field distribution has a
non-monotonic shape and has a peak somewhere inside the disordered medium. In Fig. 2, we plot field
distributions for two representative cases. When disorder is strong and mode conversion is weak (g = 0.2,
θ = 10◦), the field is enhanced and has a peak inside the plasma medium and the shape is non-monotonic.
On the other hand, when disorder is weak and mode conversion is strong, the field profile is monotonic.

4 Conclusion

In this paper, we have studied the influence of random spatial variations of the plasma density on mode
conversion phenomena in cold, unmagnetized plasmas using the invariant imbedding method. We have
calculated the mode conversion coefficient averaged over a large number of random spatial configurations
generated by a random number generator. We have also calculated the spatial distribution of the field
intensity. We have obtained a surprising result that mode conversion is substantially enhanced in the
presence of weak randomness. As the strength of randomness increases further, mode conversion has been
found to be suppressed below the value in the absence of randomness due to Anderson localization effects.
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