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Abstract

We derive the sampling probability density function (pdf) of a nonlocal random electromagnetic field, field
amplitude and intensity in an undermoded chamber, i.e., in a statistically inhomogeneous time-varying envi-
ronment generated by a combined spatio-temporal stochastic process. The inhomogeneous field is represented
as a subset (sample) of a homogeneous field (ensemble). The sample statistics of the inhomogeneous field are
governed by the number of spatial degrees of freedom, in addition to the number of temporal (stir) degrees
of freedom.

1 Introduction

In recent work [1], we derived sampling pdfs for random electromagnetic (EM) fields that are local in
space and/or spatially homogeneous in a statistical sense, i.e., whose statistical properties are independent
of location of the point of observation. In particular, the ensemble mean value and standard deviation
are independent of spatial location in this idealized scenario. When calculated for realistic sample sets,
this sample standard deviation exhibits fluctuations caused by the finite size of a sample set of field data
(realization). These fluctuations vary randomly from sample set to sample set, causing the (sample) standard
deviation to become itself a random variable, in addition to the randomness of the field itself. The particular
value of the sample standard deviation calculated from a particular sample data set is then a realized value
of the sampling standard deviation. The smaller the sample set, the larger the fluctuations around its
expectation value, i.e., the ensemble standard deviation.

On the other hand, in earlier work, we investigated the effect of deterministic inhomogeneity on the field
pdf [2, 3] and on its spatial correlation properties [4]. There, the inhomogeneity was induced by an impedance
boundary (dielectric, magnetic or conducting half-space), as a canonical configuration and simplest departure
from an unbounded homogeneous propagation environment for the random field. While extension of the
methodology and results to multilayered stratified media is straightforward, more complicated types of
boundary-value problems are more problematic to solve, at least analytically. Some limited results on the
average value and standard deviation for 2-D and 3-D semi-infinite corners have been derived, and indeed
the methodology of [2, 3] could be applied to them to find the pdf.

In this paper, we investigate another canonical configuration, viz., a statistically inhomogeneous field.
While this could model the pdf of a multiple-scattered field in either a heterogeneous or turbulentmedium, we
shall not perform a boundary-value calculation. Instead, we focus on the resulting statistical inhomogeneity of
the field only and make the ansatz that the statistical parameters of the field thus acquire (spatial or temporal)
randomness to reflect the statistical heterogeneity. It is now clear that the ensemble pdf of statistically
inhomogeneous fields can be related to the sampling pdf of a statistically homogeneous field. Indeed, in the
case of Gaussian statistical inhomogeneity, these pdfs have the same functional form, because the (Gauss
normal distributed) mathematical fluctuations of the standard deviation in sampled finite sets for a sampled
homogeneous fields can then be re-interpreted as physical fluctuations for the ensemble inhomogeneous
field. Therefore, in this paper we considering the sampling pdf of the statistically inhomogeneous field
(1-D stochastic process). It follows that the results of such an analysis also represent the ensemble pdf
for a doubly-stochastic inhomogeneous field, e.g., for the ensemble EM field generated by a 2-D space-
time stochastic process. Such a situation occurs, for example, in a MT/MSRC (a fortiori in its so-called
“undermoded” regime, where the mode density is relatively small) where spatial and temporal fluctuations
of the field, across the cavity and in the course of the stirring process, respectively, occur independently



(regardless whether or not the mean value, standard deviation, etc. of these fluctuations are equivalent, on
the basis of the principle of ergodicity). More generally, mesoscopic dynamical systems exhibit statistical
fluctuations whose ensemble distribution

Physically, the view purported in this paper is that probability distributions of an undermoded system
may be characterized by a finite-size sampling distribution for samples of finite size N , associated with the
asymptotic distribution of the ensemble corresponding to the ideal overmoded system (infinite number of
degrees of freedom, N → +∞). This is made plausible by the fact that for increasing physical size of the
cavity the field the ratio of the field correlation length to the characteristic dimension of the cavity approaches
zero and the field becomes approaches statistical homogeneity.

Time-varying and spatial-statistically homogeneous random fields are characterized by pdfs whose dis-
tribution parameters (e.g., average and standard deviation) have estimated values that show sampling fluc-
tuations, as a result of the finite value of ν governing the local field. These variations give rise to bivariate
fluctuations and larger uncertainty (wider confidence intervals) of the sampled field, compared to the corre-
sponding ensemble distribution.

The physical origin of the limitation of the number of degrees of freedom can be twofold. First, the po-
tential (i.e., maximum attainable) number of statistically independent realizations, Nmax, may be restricted,
even if an unlimited number of different states of the system were generated. In a MT/MSRC, this case
represents the undermoded regime, while in a relatively small sample of a random medium it refers to the
case of a relatively small loading fraction of inclusions. In this case, even the ensemble df does not possess
Gauss normal statistical properties. Secondly, Nmax may be unlimited but, for economical or other reasons,
the sample size may have to be severely restricted (N ≪ Nmax). Thus, in this case, while the number of
degrees of freedom is potentially large, the generated number of degrees of freedom is relatively small.

2 Electric or magnetic field

Consider a spatially local analytic random electric field E(r) = E′(r)−jE′′(r) as received by an intentional
or unintentional sensor (antenna) or probe at location r in a time-varying multiple-scattering environment. A
harmonic time dependence exp(jωt) is assumed and suppressed. If this field is made up of an arbitrarily large
(theoretically infinite) number of contributions (independently fluctuating partial fields) forming a random
walk, then on account of the CLT (valid under very general but definite conditions [5]) we can assert that
the associated likelihood of E′(′) is given by
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In [1], we demonstrated that the sampling pdf of E′(′)(r) of a statistically homogeneous field is given by
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when the random field is governed by N degrees of freedom, with
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This sampling pdf can now be interpreted as the marginal sampling pdf of the local field in the case of a
statistically inhomogeneous field. The sampling pdf of its nonlocal field is then obtained by considering σE′(′)

and N in (2) to be a local parameter values at r, which are themselves sample values sE′(′) Nt for the second



stochastic process with its own associated ensemble standard deviation σE′(′) . In other words,

σE′(′) → sE′(′)(r), N → Nt(r) (4)

whence
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in which CE′(′)|S
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Thus, the sampling pdf of the nonlocal analytic field follows finally as
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Here, we assume that Nt in (4) is independent of r and that Ns is independent of time, so that both can be
considered as constants. By extension, if either or both carry their own fluctuations, (8) is itself a marginal
pdf with respect to fluctuations of Nt(r) and/or Ns(t), whence further integrations with respect to prior pdfs
fNt

(nt) and/or fNs
(ns) are necessary in order to arrive at the sampling field pdf in this case.

In the limit of a spatially homogeneous field (Ns → +∞), the bivariate stochastic process reduces to a
univariate one, i.e., we fE′(′)(ǫ′(′);Nt, Ns → +∞) ≡ fE′(′)(e′(′);Nt) and is given by the expression in (5).

Figs. ?? and ?? and show the sampling pdf (12) of a Cartesian field component (p = 1), for an ergodic

field (Nt = Nt
∆
= N) and for a nonergodic field (Nt = 5), respectively. The effect of the additional statistical

inhomogeneity is seen to result in the sampling pdf now exhibiting larger spread (lower maximum value and
heavier right-hand tails) and, hence, increased statistical uncertainty and fluctuation levels.

3 Field intensity, energy density, power

The exposition of the calculation of the pdf of the field intensity U = |E|2 – as well as the energy density or
power, which are proportional to U – follows the same methods as in [1, Sec.III]. Thus, from the conditional
and “prior” pdfs
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it follows that
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4 Conclusion

In this paper, we derived the sampling probability density function for a statistically inhomogeneous
analytic field and associated energy density, as found in an undermoded reverberation chamber. The results
constitute an extension of previous work on sampling distributions of overmoded fields on one hand, and
ensemble distributions for deterministically inhomogeneous fields as found e.g. near a PEC or dielectric
halfspace. The results are useful in determining the intrinsic field uncertainty for undermoded fields with
greater accuracy.
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