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Abstract

The AC conductivity of a carbon nanotube (CNT) is derived and it is shown that it can become negative
when the CNT is exposed to a DC axial field in addition to the AC field. For this purpose, the Boltzmann
transport equation (BTE) is solved within the relaxation time approximation (RTA) by separating the AC
and DC contributions. The near-equilibrium approximation is used for the DC part of the carrier distribution.
The AC carrier distribution and the AC conductivity are subsequently found via a semi-analytical procedure.
Absolute negative AC conductivity is found at for a DC field above 105 V/m, which is a promising result
toward enabling CNT traveling-wave amplifiers.

1 Introduction

Ever since their discovery, carbon nanotubes (CNTs) have shown remarkable electronic properties [1, 2],
such as high electron mobility [3] and ambipolarity [4], that made them a subject of investigation by many
researchers. These properties have already been exploited in several CNT devices, high-speed field-effect
transistors possibly being the most important of them [5]. Furthermore, theoretical and experimental works
have shown the existence of non-linear phenomena in CNTs, such as negative differential DC conductivity
[6], making CNTs suitable for high-frequency generating nano-devices.

In [7], Maksimenko et al. treated the combined DC-AC CNT problem, and found instabilities in the
AC field for a CNT exposed to a high axial DC field, and they speculated that this effect could lead to
amplification of the AC field. However, the analysis conducted in [7] was based on the crude assumption of
a helical CNT lattice, barely approximating the actual hexagonal structure of the CNT.

In this contribution, using the CNT tight-binding band-structure model [1], we derive the AC conductivity
of CNTs exposed to an axial DC field. For this purpose, we solve the Boltzmann transport equation (BTE)
under the commonly used relaxation time approximation (RTA) [8], and compute the AC conductivity as
a function of the applied DC field. The analysis relies on the separation of the DC and AC distributions,
leading to specific expressions for the AC distribution and conductivity. The near-equilibrium approximation
is used, providing quantitative and qualitative descriptions of the problem for DC fields below and beyond
105 V/m, respectively. Absolute negative AC conductivity is found for DC fields above 105 V/m, which
suggests amplification of the AC signal at the expense of the DC energy.

2 Boltzmann Transport Equation and Carrier Distribution

Let us consider a metallic zigzag CNT of chiral vector (n = 3q, 0), where n and q are integers [1].
Neglecting chiral corrections, a reasonable approximation for the electronic dispersion relation of the doubly-
degenerated band passing through the Fermi level is given by the linear function

ε(pz) ≈
3bγ0
2~

|pz| = vf |pz|, (1)
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where ε is the energy, pz is the z component of the crystal momentum which corresponds to the axis of the
CNT, b = 1.42 Å is the carbon interatomic distance, γ0 is the overlap integral, evaluated empirically to be
around 2.7 eV, and vf = 8.73× 105 m/s is the Fermi velocity [9].

In order to find the AC conductivity in the presence of a DC bias, we need the AC carrier distribution
through the BTE. Under the RTA, the 1D BTE is written as

∂f

∂t
+ vz

∂f

∂z
+ Fe

∂f

∂pz
= −f − f0

τ
, (2)

where f(pz, z, t) is the carrier distribution, f0 is the equilibrium carrier distribution, vz(pz) = ∂ε/∂pz is the
electron wave packet group velocity and τ = 3× 10−12 s is the scattering time in CNTs. The force exerted
by the DC and AC fields on the electrons is

Fe = −e(Edc
z + Eac

z ), (3)

where Edc
z is the DC electric field applied along the axis and assumed constant along the CNT, and Eac

z is
the AC electric field. In general, Eac

z = Re[Eac
z0e

j(hz−ωt)], where Eac
z0 is the AC electric field magnitude, h

the propagation constant along the CNT and ω the angular frequency. Assuming negligible non-local effects,
h is set to zero. The equilibrium distribution f0 is the Fermi-Dirac distribution f0 = 1/[1 + eε/(kBT )], which
upon substitution of ε from (1) becomes

f0(pz) =
1

1 + evf |pz|/(kBT )
. (4)

We next separate the distribution into its DC and AC parts by writing f = fdc+fac = fdc+Re[fac
0 e−jωt]

[10]. Assuming steady-state and spatial uniformity for the DC distribution we have ∂fdc/∂t = 0 and
∂fdc/∂z = 0, respectively. Inserting (3) into (2), using the aforementioned assumptions, and separating the
DC and AC parts, we find the equations

∂fdc

∂pz
− 1

∆pz
fdc = f0, (5a)

∂fac
0

∂pz
− Ω

∆pz
fac
0 = −Ra

∂fdc

∂pz
, (5b)

where ∆pz = eτEdc
z , Ω = 1− jτω and Ra = Eac

z0/E
dc
z . Equation (5a) is known as the 1-D drift equation. It

can be solved using the near equilibrium approximation by shifting the equilibrium distribution function f0
in the momentum space by exactly the amount of momentum ∆pz given to each electron [8]. Thus, from (4),

fdc(pz) ≈ f0(pz +∆pz) =
1

1 + evf |pz+∆pz|/(kBT )
. (6)

The AC distribution, found as the solution to the linear ordinary first-order differential equation (5b), is
given by [11]

fac
0 (pz) = eΩpz/∆pz

[
∫ pz

0

−Ra
∂fdc(p′z)

∂p′z
e−Ωp′

z/∆pzdp′z + fac
0 (0)

]

. (7)

Applying integration by parts we get

fac
0 (pz) = −Rae

Ωpz/∆pz

[

fdc(pz)e
−Ωpz/∆pz

∣

∣

∣

pz

0
+

Ω

∆pz

∫ pz

0

fdc(p′z)e
−Ωp′

z/∆pzdp′z

]

+ fac
0 (0)eΩpz/∆pz . (8)

To find fac
0 (0) we first apply the boundary condition limpz→∞ fac

0 (pz) = 0, which ensures the absence of car-
riers with infinite momentum. Second, noting that Re{Ω} > 0, we find that limpz→+∞ e−Ωpz/∆pzfac

0 (pz) = 0.
Applying this condition to (8) yields the sought after result

fac
0 (0) = Ra

[

−fdc(0) +
Ω

∆pz

∫ ∞

0

fdc(pz)e
−Ωpz/∆pzdpz

]

. (9)



Substituting (9) in (8) yields the AC distribution,

fac
0 (pz) = −Raf

dc(pz) +Ra
Ω

∆pz

∫ ∞

pz

fdc(p′z)e
−Ωp′

z/∆pzdp′z. (10)

The integral in (10) is computed numerically to find fac
0 .

3 AC Conductivity

The general relation for the surface current density is Jz = −2e/(2π~)2
∫∫

BZ
f(pz)vz(pz)dpzdpφ where

pφ is the azimuthal component of the momentum. However, pφ is quantized in a CNT due to transversal
confinement. Moreover, for a zigzag CNT, pφ = (2π~s)/(

√
3nb) where s is the azimuthal number [1]. We

can thus write

Jac
z =

−2e

(2π~)2
2π~√
3nb

2n
∑

s=1

∫ u

−u

fac(pz, s)vz(pz, s)dpz, (11)

where u = π~/3b is the Brillouin zone boundary. In a metallic zigzag CNT, only the sub-bands considered in
(1), namely s = 2n/3 and s = 4n/3, contribute to conduction. Thus, the final expression for the AC current
density becomes

Jac
z0 =

−2e√
3nbπ~

[
∫ 0

−u

−vff
ac
0 (pz)dpz +

∫ u

0

vff
ac
0 (pz)dpz

]

, (12)

where Jac
z0 is the current magnitude.

Fig. 1 plots the AC conductivity σac
z = Jac

z0/E
ac
z0 versus Edc

z for a (6,0) CNT at 1 GHz. It is clearly
seen in Fig. 1(b) that σac

z takes negative values when Edc
z > 2 × 105 V/m, indicating the possibility of AC

amplification in a metallic CNT at high DC fields.
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Figure 1: AC conductivity for a (6,0) CNT with respect to applied DC bias field. (a) Wide view showing
the transition from the low DC field positive conductivity region to the large DC field negative conductivity
region. (b) Zoomed view on the negative conductivity region.



4 Conclusion

It has been shown through a semi-classical BTE analysis that a metallic zigzag CNT takes a negative AC
conductivity when biased with sufficiently high DC fields, rendering it a possible candidate for a novel type
of traveling-wave amplifiers. This work presents a motivation to explicitly study the amplification, which
will be the goal of future work.
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