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Abstract

An outline of the evolutionary approach to time-domain electromagnetics is presented in a compact form available
for practical using. A cavity is loaded with a given source of transient signal. The cavity �eld is presented via expan-
sions in terms of the solenoidal and irrotational modes having time-dependent modal amplitudes. The di¤erential
equations with time derivative are derived from Maxwell�s equations for the amplitudes jointly with appropriate initial
conditions. The frequency-domain theory usually interprets the irrotational modes as some static �elds. Graphical
results illustrating the time dependence of the irrotational and solenoidal modes will be exhibited in the presentation.

1 Introduction

Modern powerful computers and e¤ective computational methods operating via �nite-di¤erence time-
domain procedures are capable of providing scientists with huge volume of numerical data and/or computer
graphics for electromagnetic �elds in the time domain. Theoretical methods o¤er us the means for interpret-
ing the data, to search for cause and e¤ect relationships in phenomena, and to attain physical understanding
and insight, ultimately.

In �80s, a new Evolutionary Approach to time-domain Electromagnetics (EAE) was proposed as an
alternative to the classical time-harmonic �eld theory aimed on the frequency domain [1]. Several examples
of implementation of the EAE in studies of temporal cavity oscillations are listed, for clarity�s sake, in [2-4].
In this presentation, a compact scheme of the approach is presented along with practical recommendations
for applications.

2 Outline of the Evolutionary Approach to Electromagnetics

2.1 Extraction of a Self-Adjoint Operator from Maxwell's Equations

Introduce a real-valued six-component "electromagnetic" time-domain �eld vector X (r;t) composed as

X (r;t) = col (E (r; t) ;H (r; t)) (1)

where r is a position vector of a point of observation, t is an observation time, E and H are the �eld vectors,
col means column. Then, the Maxwell�s vector equations can be written as a six-component equation

RX (r;t) =
�
@tE (r;t) + (�=�0) E (r;t) + ��10 Je (r;t)

�@tH (r;t)� ��10 Jh (r;t)

�
(2)

where � is a conductivity intended for modelling possible losses in the cavity volume V; Je and Jh are
given functions of external impressed sources of electric and magnetic kind, respectively, R is a self-adjoint
operator which is composed of aggregation of a 6� 6 matrix di¤erential procedure, R0; speci�ed as

R0X (r; t) =
�

O ��10 r�
��10 r� O

��
E (r; t)
H (r; t)

�
; where O =

0@ 0 0 0
0 0 0
0 0 0

1A ; (3)
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and the algebraic boundary conditions, [n� E ] jS = 0 and (n � H) jS = 0; where n is a unit vector outward
normal to a perfectly conducting closed singly connected cavity surface, S: Finally, the operator R is

RX (r;t) =
�

R0X (r;t) ; r 2 V; r =2 S ;
n� E (r;t) = 0; n � H (r;t) = 0; r =2 V; r 2 S : (4)

The observation of (3) and (4) shows that the operator R acts on the space variables, r; solely, meanwhile
the time variable, t; plays role of a parameter. This fact suggests to introduce a functional space of solutions
with its elements, X (r) ; composed as the six-component vectors

X (r) = col (E (r) ;H (r)) ; [n�E]S = 0; (n �H) jS = 0 (5)

where the vector functions E (r) and H (r) are real-valued, twice di¤erentiable within the domain V and
subjected to the same boundary conditions over the boundary S as in (4) : Specify the space of solutions by
introducing an inner product for any pair of the vectors X1=col (E1;H1) and X2=col (E2;H2) as

hX1 (r) ;X2 (r)i =
1

V

Z
V

(�0E1 (r) �E2 (r) + �0H1 (r) �H2 (r)) dv: (6)

Evidently, we deal with Hilbert space, L2 (V ) ; of the vector functions varying within the closed domain V:

The di¤erence of any pair of the following bilinear forms (inner products) holds as

hRX1 (r) ;X2 (r)i � hX1 (r) ;RX2 (r)i = 0: (7)

This fact signi�es that the operator R is self-adjoint and the operator eigenvalue equation holds as

RXn (r) = !n Xn (r) : r 2 V; r 2 S (8)

where !n�s are the real-valued eigenvalues, subscript n = 0;�1;�2; : : : speci�es the distribution of eigenval-
ues on a real axis in increasing order of their numerical values, and Xn = col (En;Hn) are the eigenvectors
corresponding to these eigenvalues. The spectrum f!ng is discrete because the domain V is �nite.

2.2 Complete Set of the Solenoidal and Irrotational Cavity Modes

Substitution of the operator R in equation (8) results in an equivalent boundary eigenvalue problem as(
r�Hn (r) = !n �0En (r) ; (n �Hn (r)) jS = 0
r�En (r) = !n �0Hn (r) ; [n�En (r)] jS = 0

(9)

written in terms of the constituents of the eigenvectors Xn = col (En;Hn) : Analysis of problem (9) ascertains
that it yields six varieties of the solutions originating six subspaces in the space of solutions. The solutions
corresponding to the eigenvalues !n 6= 0 yield four subspaces of the solenoidal vectors. If the cavity volume
is a short-circuited part of a cylinder, the solenoidal vectors can be associated with the TE� and TM� cavity
modes, physically. They are the solutions to the following boundary eigenvalue problems for Laplacian, r2 :

E0 fE0ng :
�
r2E0n (r) +

�
!02n c

�2�E0n (r) = 0; r �E0n (r) = 0; [n�E0n (r)]S = 0
	1
n=1

H0 fH0
ng : fH0

n (r) = r�E0n (r) = (!0n �0)g
1
n=1 r �H0

n (r) = 0;
�
n �H0

n (r)
�
jS = 0 (10)

where !0n > 0 are the real-valued eigenvalues of the operator R; n = 1; 2; : : : , c
�2 = �0�0 ; and

H00 fH00
ng :

�
r2H00

n (r) +
�
!002n c

�2�H00
n (r) = 0; r �H00

n (r) = 0;
�
n �H00

n (r)
�
jS = 0

	1
n=1

E00 fE00ng : fE00n (r) = r�H00
n (r) = (!

00
n �0)g

1
n=1 r �E00n (r) = 0; [n�E00n (r)]S = 0 (11)



where !00n > 0; n = 1; 2; : : : are the real numbers belonging to another set of the eigenvalues of R.

When !0 = 0 in (8) and hence, in (9), problem (9) has two in�nite sets of uncoupled eigensolutions as

GE fE�g :
�
E� (r) = r�� (r) : r2 �� (r) + �2��� (r) = 0; �� (r) jS = 0

	1
�=1

(12)

where �2� > 0; � = 1; 2; : : : are the eigenvalues and �� are the eigenfunctions corresponding to �
2
��s, and

GH fH�g :
�
H� (r) = r � (r) : r2  � (r) + �2� � (r) = 0; n � r � (r) jS = 0

	1
�=1

(13)

where �2� > 0; � = 1; 2; : : : ; are the eigenvalues and  � are appropriate eigensolutions. Mathematically, this
means that the eigenvalue !0 of the operator R has in�nite power of degeneration. The sets fE�g1�=1 and
fH�g1�=1 originate two subspaces in Hilbert space, GE and GH; respectively. These subspaces involve the
irrotational (i.e., curl�free) vectors only so long as r�E� = 0 and r�H� = 0:

Denote all the solutions, Xn�s, to operator equation (8) as a manifold M fXng and present it as follows

M fXng =
 
E fEn;�g
H fHn;�g

!
=

 
E0 fE0ng � E00 fE00ng �GE fE�g
H0 fH0

ng � H0 fH00
ng �GH fH�g

!
(14)

where notation � symbolizes direct summation of the subspaces in the space of solutions.

Three important remarks: 1. Completeness of the manifold M fXng in Hilbert space L2 (V ) was
proved in [1] bearing on Weyl theorem from functional analysis [5]. 2. All the six-component vectors, Xn�s;
are mutually orthogonal in L2 (V ) as the eigenvectors of the self-adjoint operator R: Their three-component
parts, En;� and Hn;� ; are mutually orthogonal, as well. Appropriate normalizations can provide all the
vectors En;� and Hn;� with physical dimensions Vm�1 (volt per meter) and Am�1 (ampere per meter),
respectively. In this sense, manifold (14) is a modal basis for the cavity �elds, physically. 3. In the process
of derivation of the modal basis, the time derivative, @t; was saved in Maxwell�s equations (2) : Hence, this
facilitates derivation of a problem for the modal amplitudes.

2.3 Modal Expansions of the Time-dependent Electromagnetic Quantities

The time-domain electric and magnetic �eld vectors are presentable via the modal expansions as

E (r; t) =
P1

n=1 e
0
n (t)E

0
n (r) +

P1
n=1 e

00
n (t)E

00
n (r) +

P1
n=1 a� (t)E� (r)

H (r; t) =
P1

n=1 h
0
n (t)H

0
n (r) +

P1
n=1 h

00
n (t)H

00
n (r) +

P1
n=1 b� (t)H� (r)

(15)

where the vector elements of the basis can be considered as already known quantities coupled with their
physical dimensions. The problem is to �nd out the scalar time-dependent coe¢ cients which are dimension-
less modal amplitudes, physically. The given functions of impressed sources, i.e., Je and Jh; from Maxwell�s
equations (2) should be speci�ed appropriately and presented then via similar modal expansions as

Je (r; t)
def
= �0$e e (r) E (t) =

P1
n=1 j

0
n (t)E

0
n (r) +

P1
n=1 j

00
n (t)E

00
n (r) +

P1
n=1 j� (t)E� (r)

Jh (r; t)
def
= �0$h h (r) H (t) =

P1
n=1 i

0
n (t)H

0
n (r) +

P1
n=1 i

00
n (t)H

00
n (r) +

P1
n=1 i� (t)H� (r) :

(16)

Under de�nition, the given source vector functions, Je and Jh; have physical dimensions of densities of the
electric and magnetic currents, i.e., Am�2 and Vm�2; respectively. Hence, the scalar free parameters, $e

and $h; should have the dimension of frequency, s�1 (inverse second), and given vector functions of the
signal carriers, e (r) and h (r) ; should have dimensions Vm�1 and Am�1; respectively. The scalar functions
E (t) and H (t) ; specifying the given time dependance of the applied signals, should be dimensionless. In
the modal source expansions (16) ; all the time-dependent scalar coe¢ cients are dimensionless.



2.4 Evolutionary Equations for the Modal Amplitudes: Cauchy Problems

The modal amplitude problem can be set via projecting the Maxwell�s equations (with retained time
derivative!) onto all the elements of modal basis. In particular, projecting the Maxwell�s equations onto two
coupled elements, E0n and H

0
n; taken in pairs from the subspaces E0 and H0; respectively, yields a pair of

ordinary di¤erential equations with time derivative1 for the pair of amplitudes, e0n (t) and h
0
n (t) ; as

d
dte

0
n+2e

0
n�!0n h0n= �$eA

0
nE (t) ;

d
dth

0
n + !

0
n e

0
n = �$hB

0
nH (t) ; e0n (0) = 0; h0n (0) = 0 (17)

where n = 1; 2; : : : ;  = �= (2�0) ; A
0
n is a projection of the vector e (r) on the element E

0
n; and B0n is

a projection of the vector h (r) on the element H0
n: Maxwell�s equations with time derivative should be

supplemented with the initial conditions for the �eld vectors. We take them as E (r; 0) = 0 and H (r; 0) = 0
which results in the pair of initial conditions for the modal amplitudes in (17) : The evolutionary equations
taken jointly with the initial conditions in (17) originate a Cauchy problem having a single solution2 for the
modal amplitudes. Similar procedure yields one more Cauchy problem for the coupled pair of amplitudes,
e00n (t) and h

00
n (t) ; as

d
dte

00
n+2e

00
n�!00n h00n= �$eA

00
nE (t) ;

d
dth

00
n + !

00
n e

00
n = �$hB

00
nH (t) ; e00n (0) = 0; h00n (0) = 0 (18)

where n = 1; 2; : : : ; A00n and B
00
n are projections of the vectors e (r) and h (r) on the pair of elements, E

00
n and

H00
n, respectively. Analogously, the Cauchy problems for the modal amplitudes of the uncoupled irrotational

modes, a� (t) and b� (t) ; are�
d
dta� + 2a� = �$eA

0
�E (t) ; a� (0) = 0

	
and

n
d
dtb� = �$hB

0
� H (t) ; b� (0) = 0

o
: (19)

Solving the problems (19) is elementary. Solutions of the problems (17) and (18) can be found out explicitly
by the method of "matrix exponential," see [2-4]. This method need not in using of the Fourier or Laplace
integral transforms, and therefore, that is available for study of various transient and regular signals.

3 Conclusion

In the presentation, a set of new graphical results will be exhibited for the modal amplitudes which
appear as a result of loading a cavity by the signals describable via 1) Dirac delta function, 2) Heaviside
step function, 3) double-exponential function [4], 4) sinusoidal signal having a beginning and an end in time.
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1Mathematician call all the di¤erential equations, in which time derivative participates, as the evolutionary equations.
2Solution to any Cauchy problem shows how a physical system progresses in time (i.e., evolves, shortly) from its initial state

(describable by given initial conditions) and up to the state at an observation time that the solution speci�es just so.


