Temporal Evolution of the Irrotational and Solenoidal Cavity Modes
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Abstract

An outline of the evolutionary approach to time-domain electromagnetics is presented in a compact form available
for practical using. A cavity is loaded with a given source of transient signal. The cavity field is presented via expan-
sions in terms of the solenoidal and irrotational modes having time-dependent modal amplitudes. The differential
equations with time derivative are derived from Maxwell’s equations for the amplitudes jointly with appropriate initial
conditions. The frequency-domain theory usually interprets the irrotational modes as some static fields. Graphical
results illustrating the time dependence of the irrotational and solenoidal modes will be exhibited in the presentation.

1 Introduction

Modern powerful computers and effective computational methods operating via finite-difference time-
domain procedures are capable of providing scientists with huge volume of numerical data and/or computer
graphics for electromagnetic fields in the time domain. Theoretical methods offer us the means for interpret-
ing the data, to search for cause and effect relationships in phenomena, and to attain physical understanding
and insight, ultimately.

In ’80s, a new Evolutionary Approach to time-domain Electromagnetics (EAE) was proposed as an
alternative to the classical time-harmonic field theory aimed on the frequency domain [1]. Several examples
of implementation of the EAE in studies of temporal cavity oscillations are listed, for clarity’s sake, in [2-4].
In this presentation, a compact scheme of the approach is presented along with practical recommendations
for applications.

2 Outline of the Evolutionary Approach to Electromagnetics

2.1 Extraction of a Self-Adjoint Operator from Maxwell’s Equations

Introduce a real-valued six-component "electromagnetic" time-domain field vector X (r,t) composed as
X (r,t) = col (€ (r,t), H(r,t)) (1)

where r is a position vector of a point of observation, ¢ is an observation time, £ and H are the field vectors,
col means column. Then, the Maxwell’s vector equations can be written as a six-component equation

OE (r,t) + (0/e0) E () + € L T (rt) )
RX (r)t) = ’ z 0 veln 2
= (e g .
where ¢ is a conductivity intended for modelling possible losses in the cavity volume V, J, and J, are
given functions of external impressed sources of electric and magnetic kind, respectively, R is a self-adjoint
operator which is composed of aggregation of a 6 x 6 matrix differential procedure, R’, specified as

1 0 0 0

R'X (r,t) = < ,10 € VX > ( £ (r,1) ), where O=1 0 0 0 |, (3)
o VX @
0 0 0 0
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and the algebraic boundary conditions, [n x £]|s = 0 and (n-H)|s = 0, where n is a unit vector outward
normal to a perfectly conducting closed singly connected cavity surface, S. Finally, the operator R is

B R'X (r,t), reV,r¢sS,
i)L{X(rﬂj)_{n><5(r,t)=O,n-7'l(1ﬁ‘at):07 ré¢V,res. W

The observation of (3) and (4) shows that the operator 9% acts on the space variables, r, solely, meanwhile
the time variable, ¢, plays role of a parameter. This fact suggests to introduce a functional space of solutions
with its elements, X (r), composed as the six-component vectors

X(r) =col(E(r),H(r)); mxE[g=0, (n-H)[s=0 (5)

where the vector functions E (r) and H (r) are real-valued, twice differentiable within the domain V' and
subjected to the same boundary conditions over the boundary S as in (4) . Specify the space of solutions by
introducing an inner product for any pair of the vectors X;=col (E1, H;) and ¥3=col (E2, H3) as

1
(X1 (r), X2 (r)) = V/ (€0E1 (r) - E2 (r) + poHy (r) - H (1)) do. (6)
1%
Evidently, we deal with Hilbert space, Ly (V') , of the vector functions varying within the closed domain V.

The difference of any pair of the following bilinear forms (inner products) holds as

(R Xy (r), X2 (r)) — (X1 (r), R Xz (r)) = 0. (7)

This fact signifies that the operator R is self-adjoint and the operator eigenvalue equation holds as
RX, (r) =w, X, (r): reV,res (8)
where w,,’s are the real-valued eigenvalues, subscript n = 0, &1, £2, ... specifies the distribution of eigenval-

ues on a real axis in increasing order of their numerical values, and X,, = col (E,,, H,,) are the eigenvectors
corresponding to these eigenvalues. The spectrum {w,,} is discrete because the domain V' is finite.

2.2 Complete Set of the Solenoidal and Irrotational Cavity Modes

Substitution of the operator 2R in equation (8) results in an equivalent boundary eigenvalue problem as

{ VxH, () =w,6E, (r), (n-H,()|s=0 o)

V X E, (r) =wp pugH, (r), mXxE,(r)]|s=0
written in terms of the constituents of the eigenvectors X,, = col (E,,, H,,) . Analysis of problem (9) ascertains
that it yields six varieties of the solutions originating six subspaces in the space of solutions. The solutions
corresponding to the eigenvalues w,, # 0 yield four subspaces of the solenoidal vectors. If the cavity volume
is a short-circuited part of a cylinder, the solenoidal vectors can be associated with the T"E— and T'M — cavity
modes, physically. They are the solutions to the following boundary eigenvalue problems for Laplacian, V? :

¢{E,}: | { V’E, (1) + (wic ) E,(r)=0, V-E (r)=0, nxE,(r)]g=0}"

H'{H,}: | {H, (1) =V XEL(r)/ (W po)tnzy | V-H, (1) =0, (n-H, (r))[s=0 (10)

where w/, > 0 are the real-valued eigenvalues of the operator R, n = 1,2, ..., ¢~ 2 = ey ; and

" {H}: | { VPH] (1) + (w2 2)Hy (r) =0, V-HI(r)=0, (n-HJ(r))]s=0} _,

(B} | {E;(r) =V xH(r)/(w;€0)},

n=1

V-E[(r)=0, mxE/@)]g=0  (11)




where w!! > 0, n = 1,2, ...are the real numbers belonging to another set of the eigenvalues of R.

When wo = 0 in (8) and hence, in (9), problem (9) has two infinite sets of uncoupled eigensolutions as

Ge{Ea}: | { Ba(r) =V, (r): V¢, (r) +r2ea (1) =0, ¢, (x)[s=0}" (12)

where k2 >0, a = 1,2, ... are the eigenvalues and ¢, are the eigenfunctions corresponding to x2’s, and
Ou{Ha}: | { Hs(r) = Vi (r): V24 (r) + 1305 (0) =0, n-Viy(r)|s =0} (13)
where V% >0,8=1,2, ..., are the eigenvalues and 14 are appropriate eigensolutions. Mathematically, this

means that the eigenvalue wy of the operator R has infinite power of degeneration. The sets {E, }.. ; and
{Hps }Zozl originate two subspaces in Hilbert space, &g and &y, respectively. These subspaces involve the
irrotational (i.e., curl—free) vectors only so long as V x E, = 0 and V x Hg = 0.

Denote all the solutions, X,,’s, to operator equation (8) as a manifold M {X,} and present it as follows

¢ {Bya) ) _ ( ¢ (E,} & ¢ {E]} & Op {Ed} ) )

T{xa} = ( 6 (H, 5) & {H,} & o (H} & & (H,)

where notation & symbolizes direct summation of the subspaces in the space of solutions.

Three important remarks: 1. Completeness of the manifold M {X,,} in Hilbert space Lo (V) was
proved in [1] bearing on Weyl theorem from functional analysis [5]. 2. All the six-component vectors, X,,’s,
are mutually orthogonal in Lo (V') as the eigenvectors of the self-adjoint operator R. Their three-component
parts, E, o and H,, g, are mutually orthogonal, as well. Appropriate normalizations can provide all the
vectors E,, o and H,, 5 with physical dimensions Vm™! (volt per meter) and Am~! (ampere per meter),
respectively. In this sense, manifold (14) is a modal basis for the cavity fields, physically. 3. In the process
of derivation of the modal basis, the time derivative, 9;, was saved in Maxwell’s equations (2). Hence, this
facilitates derivation of a problem for the modal amplitudes.

2.3 Modal Expansions of the Time-dependent Electromagnetic Quantities

The time-domain electric and magnetic field vectors are presentable via the modal expansions as

E(rt) =222y en (D EL (r) + 3200 e () B (v) + 3202 aa () Ea (r)
H(rt) =320y by () G, (0) + 3202 by () H (v) + 3202, bs () H (r)

where the vector elements of the basis can be considered as already known quantities coupled with their
physical dimensions. The problem is to find out the scalar time-dependent coefficients which are dimension-
less modal amplitudes, physically. The given functions of impressed sources, i.e., J. and [Jp, from Maxwell’s
equations (2) should be specified appropriately and presented then via similar modal expansions as

(15)

T (0, t) Y cgmee(r) E() = X500, 50 (0 E, (v) + X5, 54 (D EL(X) + 350, jo (£) Ea (r)
Tn (v,8) < pomn i (x) H () = S0 il (0 H (r) + S0 i () HY (r) + Y0 i (8) Hs (r).

Under definition, the given source vector functions, 7, and Jj, have physical dimensions of densities of the
electric and magnetic currents, i.e., Am~2 and V m™2, respectively. Hence, the scalar free parameters, w,
and wy,, should have the dimension of frequency, s~! (inverse second), and given vector functions of the
signal carriers, e (r) and h (r) , should have dimensions Vm~™' and Am™!, respectively. The scalar functions
E (t) and H (t), specifying the given time dependance of the applied signals, should be dimensionless. In
the modal source expansions (16), all the time-dependent scalar coeflicients are dimensionless.

(16)



2.4 Evolutionary Equations for the Modal Amplitudes: Cauchy Problems

The modal amplitude problem can be set via projecting the Maxwell’s equations (with retained time
derivative!) onto all the elements of modal basis. In particular, projecting the Maxwell’s equations onto two
coupled elements, E! and H/,, taken in pairs from the subspaces € and ), respectively, yields a pair of
ordinary differential equations with time derivative! for the pair of amplitudes, e}, (t) and k!, (t), as

%€;L+276;L_W{n h{n: _w€A'InE (t) ) %h’;z =+ w’/n e{rz = _th;LH (t) ; e'ln (O) = 07 h{u (0) =0 (17)
where n = 1,2,..., v = 0/ (2¢0), A}, is a projection of the vector e(r) on the element E/, and B], is
a projection of the vector h(r) on the element H/ . Maxwell’s equations with time derivative should be
supplemented with the initial conditions for the field vectors. We take them as € (r,0) = 0 and H (r,0) =0
which results in the pair of initial conditions for the modal amplitudes in (17). The evolutionary equations
taken jointly with the initial conditions in (17) originate a Cauchy problem having a single solution® for the

modal amplitudes. Similar procedure yields one more Cauchy problem for the coupled pair of amplitudes,
el (t) and k! (t), as

4ol 1 2vell —wil hii= —w ALE (t), Lh!+wlel =—w,BlH(t); el (0)=0, hl(0)=0  (18)

where n =1,2,..., A and B]] are projections of the vectors e (r) and h (r) on the pair of elements, E!! and
H!', respectively. Analogously, the Cauchy problems for the modal amplitudes of the uncoupled irrotational
modes, a,, (t) and bg (¢), are

{Lag +2va0 = —w AL E (1), a0 (0)=0} and {%bg — —@,BYH (1), bs(0) = o} . (19)

Solving the problems (19) is elementary. Solutions of the problems (17) and (18) can be found out explicitly
by the method of "matrix exponential," see [2-4]. This method need not in using of the Fourier or Laplace
integral transforms, and therefore, that is available for study of various transient and regular signals.

3 Conclusion

In the presentation, a set of new graphical results will be exhibited for the modal amplitudes which
appear as a result of loading a cavity by the signals describable via 1) Dirac delta function, 2) Heaviside
step function, &) double-exponential function [4], /) sinusoidal signal having a beginning and an end in time.
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IMathematician call all the differential equations, in which time derivative participates, as the evolutionary equations.
2Solution to any Cauchy problem shows how a physical system progresses in time (i.e., evolves, shortly) from its initial state
(describable by given initial conditions) and up to the state at an observation time that the solution specifies just so.



