
On the Change in Electrostatic Potential Energy due to the Introduction of an
Additional Conductor

Christian Sohl
Dept. of Electrical and Information Technology, Lund University, P.O. Box 118, S-221 00 Lund, Sweden

christian.sohl@eit.lth.se

Abstract

This paper generalizes a result in the classical textbook by Stratton regarding the change in electrostatic potential
energy due to the introduction of a conductor S0 into a fixed system of n conductors of arbitrary shape. The change
in electrostatic potential energy is rewritten as a surface integral over S0 which connects the unperturbed problem (the
electrostatic setting before S0 is introduced) and the perturbed problem (the electrostatic setting after S0 is introduced).
The surface integral is verified by means of variable separation of Laplace’s equation in bi-spherical coordinates.

1 Introduction

The work presented in this paper is motivated by the challenge of experimentally determine the electrostatic po-
larizability dyadic of a conducting object S0, i.e., the first moment of the induced surface charge density when S0

is subject to a homogeneous electrostatic field of unit amplitude with sources located at infinity. The reason for this
newborn interest in electrostatic quantities is because the electrostatic polarizability dyadic shows up as the fundamen-
tal quantity that restricts the all-spectrum dynamic properties of certain electromagnetic problems, see e.g., [1]. The
derivation in Section 2 follows the classical textbook by Stratton [2, pp. 117–118] but generalizes the results in that
reference to include the effects when S0 carries a non-zero total electric charge and when the remaining n conductors
are not necessarily isolated from each other. Further developments are made in Section 3 where the volume integrals
are rewritten as a surface integral over S0 alone. This surface integral is verified in Section 4 by the means of variable
separation of Laplace’s equation in bi-spherical coordinates. The paper ends with some conclusions in Section 5.

2 The Change in Electrostatic Potential Energy as Integrals over V ′ and V0

Consider a fixed system of n conductors Si, where i = 1, 2, . . . , n. Conductor Si is assumed to have total electric
charge Qi and electrostatic potential Φi. An additional conductor S0 with total electric charge Q′0 and electrostatic
potential Φ′0 is introduced into the system. As a consequence, the total electric charge and the electrostatic potential
on Si, where i = 1, 2, . . . , n, changes to Q′i and Φ′i, respectively. Let (E,D) and (E′,D′) denote the electrostatic
fields in the unperturbed and perturbed problems, respectively, i.e., the electrostatic settings before and after S0 has
been introduced. Then, the change in electrostatic potential energy is, by definition,

∆We = W ′e −We =
1

2

∫∫∫
R3

E′ ·D′ dv − 1

2

∫∫∫
R3

E ·D dv. (1)

Let V0 denote the volume inside S0, and let V denote the volume outside all conductors Si, where i = 1, 2, . . . , n,
before S0 has been introduced. Then V ′ = V − V0 is the volume in which non-zero electrostatic fields exist after the
introduction of S0. Hence, (1) can be written

∆We =
1

2

∫∫∫
V ′

E′ ·D′ dv − 1

2

∫∫∫
V

E ·D dv =
1

2

∫∫∫
V ′

E′ ·D′ −E ·D dv − 1

2

∫∫∫
V0

E ·D dv. (2)

The first integral on the right-hand side of (2) is∫∫∫
V ′

E′ ·D′−E ·D dv = −
∫∫∫
V ′

(E′−E)·(D′−D) dv+

∫∫∫
V ′

E′ ·(D′−D) dv+

∫∫∫
V ′

(E′−E)·D′ dv. (3)
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We consider constitutive relations of the form D = εE and D′ = εE′ with the same proportionality factor. This gives∫∫∫
V ′

E′ · (D′ −D) dv +

∫∫∫
V ′

(E′ −E) ·D′ dv = 2

∫∫∫
V ′

E′ · (D′ −D) dv. (4)

Equation (3) thus becomes∫∫∫
V ′

E′ ·D′ −E ·D dv = −
∫∫∫
V ′

(E′ −E) · (D′ −D) dv + 2

∫∫∫
V ′

E′ · (D′ −D) dv. (5)

Hence, (2) can be written

∆We = −1

2

∫∫∫
V ′

(E′ −E) · (D′ −D) dv +

∫∫∫
V ′

E′ · (D′ −D) dv − 1

2

∫∫∫
V0

E ·D dv. (6)

Since∇ · (D′ −D) = 0 everywhere in V ′, we have

E′ · (D′ −D) = −∇Φ′ · (D′ −D) = −∇ · (Φ′(D′ −D)) + Φ′∇ · (D′ −D) = −∇ · (Φ′(D′ −D)), (7)

and the divergence theorem gives (the unit normal vector n̂ on Si points into V ′)∫∫∫
V ′

E′ · (D′ −D) dv = −
∫∫∫
V ′

∇ · (Φ′(D′ −D)) dv =

n∑
i=0

Φ′i

∫∫
Si

(D′ −D) · n̂ dS

= Φ′0

∫∫
S0

(D′ −D) · n̂ dS +

n∑
i=1

Φ′i(Q
′
i −Qi), (8)

where we have used that Φ′ = Φ′i on Si for i = 1, 2, . . . , n. Since ∇ ·D = 0 everywhere in V0 and the total electric
charge on S0 is Q′0, we have ∫∫

S0

(D′ −D) · n̂ dS = Q′0. (9)

As a consequence, (8) becomes∫∫∫
V ′

E′ · (D′ −D) dv = Φ′0Q
′
0 +

n∑
i=1

Φ′i(Q
′
i −Qi). (10)

The change in electrostatic potential energy (6) can hence be written

∆We = Φ′0Q
′
0 +

n∑
i=1

Φ′i(Q
′
i −Qi)−

1

2

∫∫∫
V ′

(E′ −E) · (D′ −D) dv − 1

2

∫∫∫
V0

E ·D dv. (11)

Equation (11) generalizes the result in the classical textbook by Stratton [2, p. 118]. We get Stratton’s result if we
choose Q′0 = 0 and Q′i = Qi for i = 1, 2, . . . , n, i.e., if S0 is uncharged and the remaining n conductors are isolated
from each other and from S0.

3 The Change in Electrostatic Potential Energy as an Integral over S0

The aim is now to rewrite the volume integrals on the right-hand side of (11) as a surface integral over S0 alone.
Since∇ · (D′ −D) = 0 everywhere in V ′, we have

(E′ −E) · (D′ −D) = −∇ · ((Φ′ −Φ)(D′ −D)) + (Φ′ −Φ)∇ · (D′ −D) = −∇ · ((Φ′ −Φ)(D′ −D)), (12)



and the divergence theorem gives (the unit normal vector n̂ on Si points into V ′)∫∫∫
V ′

(E′ −E) · (D′ −D) dv = −
∫∫∫
V ′

∇ · ((Φ′ − Φ)(D′ −D)) dv

=

∫∫
S0

(Φ′0 − Φ)(D′ −D) · n̂ dS +

n∑
i=1

(Φ′i − Φi)

∫∫
Si

(D′ −D) · n̂ dS. (13)

This can be simplified so that only a surface integral over S0 remains:∫∫∫
V ′

(E′ −E) · (D′ −D) dv =

∫∫
S0

(Φ′0D
′ − Φ′0D − ΦD′ + ΦD) · n̂ dS +

n∑
i=1

(Φ′i − Φi)(Q
′
i −Qi), (14)

where Φ′ = Φ′0 on S0. Since the total electric charge on S0 is Q′0, we have∫∫
S0

Φ′0D
′ · n̂ dS = Φ′0

∫∫
S0

D′ · n̂ dS = Φ′0Q
′
0. (15)

Moreover, since∇ ·D = 0 everywhere in V0, the divergence theorem gives∫∫
S0

Φ′0D · n̂ dS = Φ′0

∫∫
S0

D · n̂ dS = Φ′0

∫∫∫
V0

∇ ·D dv = 0 (16)

and ∫∫
S0

ΦD · n̂ dS =

∫∫∫
V0

∇ · (ΦD) dv =

∫∫∫
V0

∇Φ ·D dv = −
∫∫∫
V0

E ·D dv. (17)

Hence, (14) becomes∫∫∫
V ′

(E′ −E) · (D′ −D) dv = Φ′0Q
′
0 +

n∑
i=1

(Φ′i − Φi)(Q
′
i −Qi)−

∫∫∫
V0

E ·D dv −
∫∫
S0

ΦD′ · n̂ dS. (18)

Equation (11) can therefore be written

∆We =
1

2
Φ′0Q

′
0 +

1

2

n∑
i=1

(Φ′i + Φi)(Q
′
i −Qi) +

1

2

∫∫
S0

Φρ′S dS, (19)

where we have introduced the surface charge density ρ′S = D′ · n̂ of the perturbed problem. Since all conductors are
equipotential surfaces we can alternatively write the change in electrostatic potential energy as [3, p. 43]

∆We = W ′e −We =
1

2
Φ′0Q

′
0 +

1

2

n∑
i=1

Φ′iQ
′
i −

1

2

n∑
i=1

ΦiQi. (20)

By comparing (19) and (20) we get a surface integral over S0 that connects the unperturbed and perturbed problems:∫∫
S0

Φρ′S dS =

n∑
i=1

(Φ′iQi − ΦiQ
′
i). (21)

Note that the right-hand side of (21) is independent of Φ′0 and Q′0. Equation (21) can also be derived by applying the
divergence theorem in V ′ to the reciprocity-like identity 0 = −E ·D′+E′ ·D = ∇ · (ΦD′−Φ′D), where we have
used that∇ ·D = ∇ ·D′ = 0 everywhere in V ′. The result is in agreement with (21):

0 =

∫∫∫
V ′

∇ · (ΦD′ − Φ′D) dv =

∫∫
S0

(ΦD′ − Φ′D) · n̂ dS +

n∑
i=1

∫∫
Si

(ΦiD
′ − Φ′iD) · n̂ dS

=

∫∫
S0

Φρ′S dS +

n∑
i=1

(ΦiQ
′
i − Φ′iQi). (22)



Application of (21) to the change in capacitance, and its relation to the electrostatic polarizability dyadic, when S0 is
immersed into the electrostatic fields of a parallel plate capacitor, will be discussed in a forthcoming paper.

4 One conducting sphere versus two conducting spheres

Equation (21) can be verified for n = 1 when S0 and S1 are two conducting spheres by the means of bi-spherical
coordinates. These curvilinear coordinates are defined by [4, pp. 1298–1301]

(x, y, z) =
a

coshµ− cos η
(sin η cosφ, sin η sinφ, sinhµ), (23)

where −∞ < µ < ∞, 0 ≤ η ≤ π, and 0 ≤ φ < 2π. The two spheres correspond to the coordinate surfaces µ = µ0

and µ = −µ1, where µ0 > 0 and µ1 > 0. If the radii of the spheres are r0 and r1, respectively, and their centers are
separated by the distance h, then µ0 = ln((d0 +a)/r0) and µ1 = ln((d1 +a)/r1), where a =

√
d20 − r20 =

√
d21 − r21

with d0 = (h2 + r20 − r21)/2h and d1 = (h2 + r21 − r20)/2h. The sphere with radius r0 is assumed to have electrostatic
potential Φ′0 and total electric chargeQ′0 in the perturbed problem. The analogous quantities for the sphere with radius
r1 are Φ′1 and Q′1, respectively. Laplace’s equation separates in bi-spherical coordinates and the electrostatic potential
in the perturbed problem can be written [4, pp. 1298–1301]

Φ′(µ, η) = C(µ, η)

∞∑
n=0

{
Φ′0

e−(n+1/2)µ(e(2n+1)(µ+µ1) − 1)

e(2n+1)(µ0+µ1) − 1
+ Φ′1

e(n+1/2)µ(e(2n+1)(µ0−µ) − 1)

e(2n+1)(µ0+µ1) − 1

}
Pn(cos η),

(24)
where C(µ, η) =

√
2(coshµ− cos η) and Pn is the Legendre polynomial of degree n. The surface charge densities

on S0 and S1 are ρ′S0
= ε0a

−1(coshµ0 − cos η)∂µΦ′(µ0, η) and ρ′S1
= −ε0a−1(coshµ1 − cos η)∂µΦ′(−µ1, η),

respectively. The total electric charge on S1 in the perturbed problem can be written

Q′1 = 2π

∫ π

0

ρ′S1
(η)

a2 sin η

(coshµ1 − cos η)2
dη. (25)

We obtain the unperturbed problem by letting µ0 → ∞. This implies Q1 = limµ0→∞Q′1 = 4πε0aΦ1/ sinhµ1, and
the electrostatic potential in the unperturbed problem at the fictitious sphere µ = µ0 becomes

Φ(µ0, η) = Φ1

√
coshµ0 − cos η

cosh(µ0 + 2µ1)− cos η
. (26)

After some cumbersome algebra it is possible to verify (21) by combining the formulas above.

5 Conclusions

It is concluded that the change in electrostatic potential energy can be written either as volume integrals over V ′

and V0 or as a surface integral over S0 alone. This implies the existence of the identity (21) which connects the
unperturbed and perturbed problems in a non-trivial way. This identity can be verified when n = 1 by solving the
Laplace equation in bi-spherical coordinates, see Section 4.
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