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Abstract

We present an efficient formulation based on the linear embedding via Green’s operators (LEGO) and the eigencurrent

expansion method to optimize composite wave interaction structures, e.g., photonic-crystal based devices. In LEGO,

a composite structure is broken up into “bricks” that are characterized through scattering operators and the interaction

among them is captured using transfer operators. By exploiting this diakoptic nature of LEGO, we show how the

optimization is accomplished using an effective operator defined over the bricks (usually few) enclosing the space

where the fields are sampled. This operator encompasses the effect of the surrounding and separates the domain to be

optimized from the fixed one, enabling us to carry out the optimization with little computational effort.

1 Introduction

Over the past years, the interest in photonic crystals (PhC) has been driven by the ability to confine and guide en-

ergy by adding defects to the crystal. This characteristic has made PhCs essential components of photonic integrated

circuits (PICs), and correspondingly, the need for efficient and reliable numeric modelling tools for such structures

has increased. Commonly, simulations of PhC devices are performed using the finite difference time domain (FDTD)

method [1, 2]. Although FDTD may provide a complete frequency characterization in a single run, it also has some

drawbacks. First, the refinement of FDTD mesh will easily drain computational resources for electrically large struc-

tures. Second, if one wants to consider variations within a small designated domain in a design stage, FDTD would

require a full rerun for the whole structure.

To address these issues, we apply electromagnetic modelling to a general PhC structure using the linear embedding

via Green’s operators with the eigencurrent expansion method (LEGO-EEM). LEGO is a domain decomposition

method (DDM) where a composite structure is broken up into “bricks” that are characterized through scattering

operators. To capture the interaction among the bricks, transfer operators are defined. To efficiently deal with large

structures, we combine LEGO with the eigencurrent expansion method (EEM). In the EEM a set of basis functions

that are good approximation to the true eigenfunctions of the relevant operator are used, resulting in a remarkable

order reduction. We will show how with LEGO, any optimization can be performed by using an effective operator

defined over the bricks (usually few) enclosing the space where the fields are sampled. This operator encompasses the

effect of the surrounding and separates the domain to be optimized from the fixed one.

As an application example, we use LEGO-EEM to optimize a PhC-based channel drop filter (CDF) [2]. Briefly, in

a CDF a propagating mode is transferred from one waveguide (called the bus) to another waveguide (called the drop)

through a resonant element [1, 3, 4]. This paper is organized as follow: In section 2 we present a general formulation

for optimization using LEGO-EEM. In section 3, we apply that formulation to optimize a typical CDF, and finally in

section 4 conclusions are given.

2 An Efficient Formulation for Optimization using LEGO-EEM

Consider a structure composed of NB +NT elements in a homogeneous background as shown in Figure 1. With

NB elements with “fixed” properties and NT elements with composition and shape that are to be optimized. We

refer to the latter as the “target” elements and we assume time-harmonic fields with exp (ωt) time dependency.
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Figure 1: A structure is divided into bricks which are char-

acterized by scattering operators Skk. The multiple scatter-

ing in the structure is captured by transfer operators Tkn.

A portion of the structure is identified as the “target” in the

optimization.

We embed each element in a bounded domain Dk, k =
1, · · · , NB + NT , dubbed brick, which we character-

ize through a scattering operator Skk [5]. The region

where the fields are to be sampled is also embedded in

bricks Del with boundary ∂Del, l = 1, · · · , Ne; we

refer to them as the “empty” structure. In a similar

fashion, the sources are embedded in bricks Dsj , j =
1, · · · , Ns forming the “source” domain. We seek for

an expression of the total equivalent incident current

qi
totl =

[

J i
totl M

i
totl

]t

on ∂D−
el that in the light of Love’s

equivalence principle reproduces the actual field in Del.

We similarly define an outer equivalent incident current

qi
on =

[

J i
on M i

on

]t

on ∂D+
sn, n = 1, · · · , Ns that re-

produces the field radiated by the sources (see Figure1).

These currents are related by

qi
tot = qi + T

(eF)qs(F) + T
(eT)qs(T), (1)

[

S
−1(F) −T
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−T
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S
−1(T)

] [
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]
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o

]

, (2)

where qi
tot =

[

qi
tot1, · · · , q

i
totNe

]t
, qi

o =
[

qi
o1, · · · , q

i
oNs

]t
, qi =

[

qi
1, · · · , q

i
Ne

]t
is the equivalent incident current on

the empty structure, qs(F) =
[

qs(F)
1 , · · · , qs(F)

NB

]t

is the equivalent scattered current on the fixed structure, qs(T) =
[

qs(T)
1 , · · · , qs(T)

NT

]t

is the equivalent scattered current on the target, and any T and S−1 are current transfer operators

and a inverse scattering operators respectively [5]. We efficiently solve (1)-(2) using the MoM with the EEM [5].

Thereby, the algebraic counterpart of (2) becomes
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Š
(T)

uu

] [

Ť
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where we have used the check accent to indicate that (3) is the algebraic counterpart of (2) in the Nc × (NB +NT )
coupled eigencurrent basis and (4) represents the same in the Nu × (NB +NT ) uncoupled eigencurrent basis. Here,
[

Š
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{[
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as the scattering matrix of the fixed structure as seen from the target, we obtain
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Ť
(eT)

u

] [

Š
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We observe that in (5) only
[

Š
(T)

cc

]

and
[

Š
(T)

uu

]

have to be updated by recomputing
[

Š(T)
kk

]

when a parameter in the

target changes, the other matrices are constant as long as the eigencurrent basis is fixed. This feature renders (5) an

efficient formulation for optimization, since enables to tune the target with little computational effort. Moreover in

general Nc ≪ 2Nf with Nc +Nu = 2Nf i.e. the number of basis functions used to expand qs(F,T)
k on ∂D+

k , thereby, a

significant amount of memory is saved when storing the matrices in (5).

3 LEGO and EEM applied to the Design of Photonic-Crystal based Channel Drop
Filters



Figure 2: CDF with two equal single mode cavities and par-

allel waveguides. Matching terminations are used to sup-

press reflected incoming signals.

We realize the CDF using an array of 2-D dielectric

posts with radius r = 0.2a and εr = 11.56 that have

been embedded in as much square bricks as Figure 2

shows. This array of posts exhibits a large TMz band-

gap with fa/c ∈ [0.29, 0.42] [2], with c the speed of

light and a the lattice constant. Note that for the cav-

ity posts we have taken the fixed parameters as in [2].

Hence, the cavities are made by reducing two post ra-

dius to r = 0.05a and their permittivity to εr = 6.60. It

is expected that these cavities exhibit a single monopole

mode at resonance. A frequency sweep has shown this

resonance to be at foa/c ≈ 0.372. If there are no losses

in the waveguides and the cavities, it is not difficult to

find using couple mode theory [4] that the maximum of
|V −

6
|2

|V +

1
|2 in Figure 2 occurs when the symmetric mode as = a1+a2√

2
and the antisymmetric mode as̄ = a1−a2√

2
at the

cross-section, are degenerate at the resonant frequency of one single cavity [1, 2]. This is mathematically stated as

C − 2|k|2 sinβd = 0, (6)

where k is the coupling constants waveguide-cavity, β is the propagation constant in both waveguides and C as the

cavity-cavity coupling constant with C ∈ R [2]. According to (6) the direct cavity-cavity coupling and the weak

indirect waveguide-cavity coupling must be balanced. We proceed by applying our full-wave optimization strategy

using (5) to effectively accomplish (6). In our optimization procedure, we regard (6) as an equality constraint for the

fixed resonance frequency. In Figure 2 we set βd = π
2 + mπ with m = 2 thus d = 5a since simulations show that

β ≈ 0.25 2π/a. The two parallel waveguides are made by removing two row of posts and they will be ended by

matching terminations. Before we describe the optimization of the target bricks in Figure 2, we consider the matching

termination.

Figure 3: Setup for the optimization of the absorbing posts.

The matching termination consists of three absorb-

ing posts with radius r1 = 0.2a, r2 = 0.3a, r3 =
0.4a and εr1 = µr1 ≈ 9.74 − 0.00, εr2 = µr2 ≈
19.34− 34.72 and εr3 = µr3 ≈ 4.68− 0.00 that have

been optimized using (5) in the setup of Figure 3, where

again the source and all the posts have been embedded

in square bricks. The rationale was to maximize the nor-

mal component of the Poynting vector (with respect to

the cross-section) at resonance in an empty brick in the

defect waveguide, thus minimizing the reflected power. The cost function was defined as CF1 = |So
n|/|S

i
n| where |So

n|
is the normal Poynting vector in the empty brick when the defect waveguide is open to background i.e. all posts to the

right of the empty brick and along the waveguide are removed and |Si
n| is the normal Poynting vector at iteration i.

We do not include the detailed results of this optimization for sake of brevity.

We now proceed to accomplish (6) by playing with the waveguide-cavity coupling constant in Figure 2. Thereby,

we use four alike posts with unknown εr and radius as the target in order to maximize the transfered power in the

forward direction while minimizing the transmitted power and the transfered power in the backward direction. Hence,

the cost function is defined as CF2 = Pt/Ps + Pb/Ps + (1− Pf/Ps) where Pt is the transmitted power, Pb is the

transfered power in the backward direction, Pf is the transfered power in the forward direction and Ps is the power

delivered by the source which is computed using the currents on the brick that embeds the source. To sense these

powers we have considered three sampling bricks in the waveguides. To excite the CDF a current line source is

used and once again (5) will be the core engine to minimize the cost function. To perform this optimization, we

use 2Nf = 104 triangle basis functions to expand any equivalent current on each brick, we retain N (F)
c = 21 and

N (F)
u = 83 basis functions, while for the target we have N (T)

c = 100 and N (T)
u = 4.

Figure 4(a) shows the minimization of CF2 with initial guess of εr = 9.50, µr = 1.0 and r = 0.2a using the

subroutine E04JYF of the NAG library. The found permittivity and radius for the target posts are εr ≈ 3.42, µr = 1.0
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(a) The cost function CF2 vs No of iterations. (b) Field distribution |Ez | showing the tunneling effect in the CDF after optimization.

Figure 4: Optimization results for the simulated CDF

and r ≈ 0.173a and the power ratios amount to Pt

Ps
≈ 0.116, Pb

Ps
≈ 0.109 and Pf

Ps
≈ 0.703 for an estimated transfer

efficiency of 70.3%. Figure 4(b) shows a snapshot of |Ez| showing the cavity tunneling effect.

Table 1: Characteristic sizes and memory usage (MB)

Channel Drop Filter optimization

NB = 479, NT = 4, 2Nf = 104, N (F)
c = 21, N (T)

c = 100

LEGO-EEM (BIE)
[

Ť (TF)
cc

]

400× 10059 (61) 416× 49816 (316)
[

Ť (eF)
c

]

312× 10059 (48) 312× 49816 (237)
[

Š(F)
cc

]

10059× 10059 (1.5 GB) 49816× 49816 (37 GB)

Table 1 summarizes the memory usage

for the dominant matrices in (5) when us-

ing a boundary integral equation (BIE) di-

rectly posed on the cylinder contours and

LEGO-EEM. The advantage of (5) to handle

large structure is remarkable judging by the

achieved average compression ratio of c̄r =
84.5% in memory usage.

4 Conclusions

We have endowed LEGO with the EEM to efficiently tackle large electromagnetic problems. We have seen that

LEGO-EEM efficiently allows for fine tuning of a target domain by only recomputing the scattering matrices of the

bricks whose content changes. We have applied the presented formulation in a typical CDF configuration and we have

achieved good tunneling in few iterations though not 100% as the simplified model predicts. Nevertheless, LEGO-

EEM has proved to be a exceptional tool for optimization.

Acknowledgments

This research was supported by the MEMPHIS project under contract No 10006758.

References

[1] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and H.A. Haus, “Channel drop filters in photonic crystals,” Optic

Express 4, 1998.

[2] S. Fan, P. R. Villeneuve, J.D. Joannopoulos, M.J.Khan, C.Manolatou, and H.A.Haus, “Theoretical analysis of

channel drop tunneling processes,” Physical Review B, 1999.

[3] S. Fan, P. R. Villeneuve, J.D. Joannopoulos, and H.A Haus, “Channel drop tunneling through localized states,”

Physical Review Letter, 1998.

[4] C.Manolatou, M.J. Khan, S. Fan, P. R. Villeneuve, H.A Haus, and J.D. Joannopoulos, “Coupling of modes analysis

of resonant channel add-drop filters,” IEEE J. Quantum Electron., 1999.

[5] V.Lancellotti, B.P. de Hon, and A.G.Tijhuis, “An eigencurrent approach to the analysis of electrically large 3-D

structures using LEGO,” IEEE Trans. Antennas Propagat., vol. 57, pp. 3575–3585, Nov. 2009.


