CSI-CFI Formulations of the Multiresolution Inexact Newton Method
– A Numerical Comparison

Giacomo Oliveri1, Andrea Randazzo2, Matteo Pastorino2, and Andrea Massa1

1Eledia Research Group@DISI, University of Trento, 38123 Trento, Italy
Phone: +39 0461 882057, Fax: +39 0461 882063
Email: giacomo.oliveri@disi.unitn.it, andrea.massa@ing.unitn.it

2Department of Biophysical and Electronic Engineering, University of Genoa, 16100 Genoa, Italy
Phone: +39 010 353 2242, Fax: +39 010 353 2245
Email: andrea.randazzo@unige.it, matteo.pastorino@unige.it

Abstract

A numerical comparison of two innovative microwave imaging strategies is presented. To effectively tackle the non-linearity and ill-posedness arising in the inversion process, the techniques integrate a multi-resolution approach with two different ‘Inexact-Newton’ methods developed either within the contrast source or within the contrast field formulations of the inverse scattering problem. A set of preliminary numerical results is presented to compare the features and potentialities of the methods.

1. Introduction and Motivation

In the last years, great efforts have been devoted to the development of fast and efficient electromagnetic imaging techniques [1]-[7]. Indeed, inverse-scattering methods are gaining a lot of attention due to their applicability to several technological domain, such as non-destructing testing and evaluations in civil and industrial fields, medical imaging, and subsurface inspection [1]-[7]. In such approaches, the objects under analysis are illuminated by means of known “incident” electromagnetic fields, and the response to such interrogation, i.e., the ‘scattered field’, is recorded [1]. Microwave imaging methods aim at obtaining a reconstruction of the dielectric properties of the investigated region starting from the measured samples of such field [1]-[7].

In this framework, the inverse scattering problem is usually formulated in terms of two electric field integral equations, which relate the measured scattered electric field (data term) and the incident electric field (state term) to the distributions of the dielectric properties and of the electric field in the investigation area (CFI formulation). However, alternative formulations have been proposed as well [8]. Indeed, the microwave imaging problem has been more recently stated in terms of the contrast source integral equations whose unknowns are the induced current (i.e., the contrast source) and the contrast function (CSI formulation) [8]. Such approaches have been actually proposed since the resulting problem exhibit a linear data equation, thus yielding a simpler problem to be solved. Unfortunately, both CSI- and CFI-formulated inverse scattering problems turn out to be non linear and severely ill-posed, therefore yielding to several theoretical/numerical issues in their solutions.

Several techniques have been proposed in the recent years to mitigate such features. More specifically, multi-resolution strategies proved to be very effective in reducing the local-minima problems [10, 11]. Moreover, efficient regularization techniques able to mitigate the ill-posedness/ill-conditioning of the involved equations, such as Inexact-Newton-based methods [9][12], have been investigated by using the two formulations previously introduced. To efficiently tackle both the ill-posedness and the local-minima issues, the integration of regularization and multi-scaling strategies has also been preliminarily discussed for the CFI formulation [13].

In the present paper, the inversion strategy developed in [13] (denoted as IMSA-IN-CFI) is further analyzed and a new multi-resolution approach based on the CSI formulation (denoted as IMSA-IN-CSI) is briefly introduced. The performances of the two methods are evaluated and compared by means of a preliminary set of numerical simulations.

2. Mathematical formulation

A cylindrical unknown scatterer is located inside a known investigation area \(A_o \), whose background is composed by a linear and isotropic homogeneous medium with complex dielectric permittivity \(\varepsilon_o \) and magnetic permeability \(\mu_o = \mu_0 \) (being \(\mu_0 \) the magnetic permeability of the vacuum.). The object is illuminated by a TM incident...
electric field with z-component denoted as $E_{\text{inc}}(r)$, which in the present paper is supposed to be generated by a line-
current source located at positions r_n. Since under the previous assumptions the scattering problem can be described in
terms of scalar 2D equations, in the following all the field quantities are representative of the z-components of the
electric fields. Moreover, a $e^{j\omega t}$ time dependence is assumed and omitted in the following. The electric field scattered by
the object, $E_{\text{scatt}}(r)$, is collected in a measurement domain A_{meas}, which in a discrete setting is composed by M
points, located at $r_m^{(n)}$. For the sake of simplicity, the mathematical formulation presented in this paper is referred to a single
view case; the multi-view extension is straightforward and can be found in several papers (e.g., [8][11].)

As it is well known, the measured electric field can be related to the dielectric properties of the investigation
area by means of a non-linear operator equation [1], i.e.,

$$ y = \Lambda(x) $$

where x and y contain the unknown functions to be retrieved and the measured and/or known functions, respectively.

In the standard CFI formulation [1], the known term is given by $y = [E_{\text{meas}} \quad E_{\text{inc}}]$, being the superscript t the
transpose operator and E_{inc} the incident electric field inside the investigation area, whereas the unknown vector x is

$$ x = \begin{bmatrix} r & E_{\text{tot}} \end{bmatrix}, \quad \text{where } E_{\text{tot}} \text{ is the total electric field inside the investigation domain and } \tau \text{ is the contrast function, defined as}$$

$$ \tau(r) = \frac{e(r)}{e_\text{p}} - 1, \quad r \in A_{\text{inv}} $$

In equation (2), $e(r)$ is the complex dielectric permittivity at point $r \in A_{\text{inv}}$. Moreover, the scattering operator is
given by $\Lambda_{\text{CFI}}(x) = \begin{bmatrix} \Lambda_{\text{ext}}(x) & \Lambda_{\text{int}}(x) \end{bmatrix}$, where [1]

$$ \Lambda_{\text{ext}}^{\text{CFI}}(x)(r) = -k^2 \int_{A_{\text{inv}}}^{A_{\text{meas}}} \tau(r') E_{\text{inc}}(r') g(r,r') dr', \quad r \in A_{\text{meas}} $$

$$ \Lambda_{\text{int}}^{\text{CFI}}(x)(r) = E_{\text{tot}}(r) + k^2 \int_{A_{\text{inv}}}^{A_{\text{meas}}} \tau(r') E_{\text{tot}}(r') g(r,r') dr', \quad r \in A_{\text{inv}} $$

In the CSI formulation, the known and unknown terms are $y = [E_{\text{meas}} \quad 0]$ and $x = [\tau \quad J]$, respectively, where
J is the so-called contrast source [7] given by $J(r) = \tau(r) E_{\text{tot}}(r)$, $r \in A_{\text{inv}}$. In this case, the scattering operator is
given by $\Lambda_{\text{CSI}}(x) = \begin{bmatrix} \Lambda_{\text{ext}}(x) & \Lambda_{\text{int}}(x) \end{bmatrix}$, where [9]

$$ \Lambda_{\text{ext}}^{\text{CSI}}(x)(r) = -k^2 \int_{A_{\text{inv}}}^{A_{\text{meas}}} J(r') g(r,r') dr', \quad r \in A_{\text{meas}} $$

$$ \Lambda_{\text{int}}^{\text{CSI}}(x)(r) = J(r) - \tau(r) E_{\text{inc}}(r) + k^2 \tau(r) \int_{A_{\text{inv}}}^{A_{\text{meas}}} J(r') g(r,r') dr', \quad r \in A_{\text{inv}} $$

3. Inexact-Newton iterative multi-scaling approach

In the approach presented in this paper, equation (1) is solved by means of an iterative multi-scaling strategy. At
each stage of the IMSA, the involved equations are discretized by subdividing the investigation domain into N
cells according to the Richmond’s procedure. Consequently, a set of S discrete inverse problems $y^{(s)} = \Lambda^{(s)}(x^{(s)})$, $s = 1, \ldots, S$, is obtained, being S the number of IMSA stages.

In the IMSA-IN framework, the solution of the inverse scattering problem at the sth step is obtained by means of the
following iterative procedure [13]

1. Set $n = 0$ and initialize the unknown $x^{(s)}_n$ with the reconstruction obtained at the previous step
2. Linearize equation (1), in order to obtain a linear equation $\Lambda_{\text{Lin}} \delta x^{(s)}_n = y^{(s)} - \Lambda(x^{(s)}_n)$, being Λ_{Lin} the Frechet
derivative of Λ at point $x^{(s)}_n$ [9][12]. The operator to be used depends upon the considered formulation (Λ_{CFI}
for the CFI formulation and Λ_{CSI} for the CSI formulation).
3. Find a regularized solution \(\delta \mathbf{x}_n^n \) to the linearized equation by using a truncated Landweber algorithm (stopped after \(I_{\text{in}} \) iterations).

4. Update current solution with \(\mathbf{x}_n^{n+1} = \mathbf{x}_n^n + \delta \mathbf{x}_n^n \)

5. Repeat steps (2)-(4) until a predefined stopping criterion is satisfied (e.g., a maximum number of iterations \(I_{\text{out}} \) is reached.)

The reconstructed dielectric profile at the \(s \)th scale is filtered and clustered in order to define the regions of interest (i.e., those where the object is located by the inversion method). After such regions are identified, the discretization grid is refined to deduce the updated version of equation (1) at the \(s+1 \) step [10]. The IMSA-IN is iterated until a predefined stopping rule is satisfied (e.g., the size and location of the region of interest does not change) [10].

4. Numerical Results

A numerical analysis is presented in this section to compare the features of the considered IMSA-IN based methods. Towards this end, an investigation domain of size \(2.4\lambda \times 2.4\lambda \) (free-space background) is illuminated by \(V=24 \) TM-waves. The total field calculated through a MoM-based solver (by exploiting different discretization grids in the direct and inverse procedures in order to avoid the "inverse-crime" problem) has been collected at \(M=24 \) measurement points located on a circle of radius \(1.8\lambda \), and the inversion procedures have been carried out assuming \(I_{\text{in}} = I_{\text{out}} = 30 \) and \(S=4 \).

![Figure 1](image1.png)

Figure 1. [Separate Cylinders, SNR=30 dB] Actual (a) and retrieved dielectric profiles by (b) IMSA-IN-CFI and (c) IMSA-IN-CSI.

In the first numerical example, two lossless scatterers with different permittivity (\(\tau_{\text{square}} = 0.6 \), \(\tau_{\text{L-shaped}} = 0.3 \)) are considered [Fig. 1(a)]. The IMSA-IN-CFI and IMSA-IN-CSI retrieved contrast profiles assuming a signal-to-noise ratio SNR of 30 dB show that (a) both methods are able to correctly detect the presence of two separate objects as well as to identify their shapes [Fig. 1(b) vs. 1(c)]; (b) however, the CSI-based inversion method provides a more accurate estimation of the object contrasts (specifically, regarding the "L-shaped" object [Fig. 1(c)].

![Figure 2](image2.png)

Figure 2. [Irregular Cylinder, SNR=10 dB] Actual (a) and retrieved dielectric profiles by (b) IMSA-IN-CFI and (c) IMSA-IN-CSI.
The enhanced accuracy of the IMSA-IN-CSI turns out even more evident when dealing with lower SNR scenarios. To investigate this feature, the next numerical experiment concerns a dielectric scatterer characterized by the τ profile in Fig. 2(a). The retrieved contrast functions assuming $\text{SNR}=10$ dB (Fig. 2) show that, despite an expected accuracy reduction (due to the SNR value), the IMSA-IN-CSI is able to correctly detect the location and shape of the object [Fig. 2(c)], while, on the contrary, the IMSA-IN-CFI yields to a low quality reconstruction with some strong artifact [Fig. 2(b)].

5. Conclusion

A preliminary numerical comparison of the features and potentialities of two multi-resolution microwave imaging techniques based on the Inexact-Newton approach has been presented. The reported results indicate that, while the two methods yield to a similar accuracy when high SNR conditions are at hand, the CSI-based procedure outperforms the CFI one when dealing with strongly corrupted data. A comparison of the computational complexity of the two methods as a function of the view and measurement number and of the investigation domain size is currently under investigation.

6. References

