Transient Plane-wave decomposition of reflected TE Gaussian-Beam from Moving Dielectric-Magnetic Planar Interface

Timor Melamed¹, Inbal Adar², and Boaz Shetzer³

¹ Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel, timormel@ee.bgu.ac.il
² adar.inbal@gmail.com
³ bshets@gmail.com

Abstract

This paper is concerned with applying plane-wave decomposition for scattering of a pulsed-beam from a fast moving planar dielectric discontinuity under the frame work of Special Relativity.

1 Introduction

Pulsed-beams (PBs) are the basis for the Phase-pace Pulsed-Beam Summation Method which is a framework for analyzing radiation from extended sources as well as scattering from complex media. In this formulation, the field is expanded into a discrete spectrum of pulsed-beams propagators. These propagators emanate from the aperture plane in a given set of points, in a given set of directions and in a given set of delays [1-3]. Such PB solutions have been obtained in generic media profiles such as inhomogeneous [4-6], anisotropic [7-11] and more.

This paper investigates the reflection of an electromagnetic time-dependent PB by a fast moving planar half-space dielectric-magnetic medium (isotropic at the co-moving frame). The PB field is decomposed into its transient plane-wave (PW) constituents which are transformed into the S'-frame (co-moving) of reference in which the medium is at rest. The reflected PWs are obtained by applying Maxwell’s boundary conditions in order to obtained a spectral representation of the reflected PB. The resulting spectral integral is transformed back to the S-frame of reference (the "laboratory-frame"), yielding a PW spectral representation of the reflected PB. In the present paper we present only the TE PB, but the TM PB can be easily obtained in a similar manner.

2 Lorentz Transformation of EM Field

The moving reference frame’s origin is located at the moving dielectric, $z' = 0$, which is moving with velocity $v = vz$ with respect to the S frame, so that $x' = x, y' = y, z' = z$. The corresponding Lorentz and inverse Lorentz Transformation is given by

\[
ct' = \gamma ct - \gamma \beta \cdot r, \quad ct = \gamma ct' + \gamma \beta \cdot r',
\]
\[
r' = \bar{\alpha} \cdot r - \gamma \beta ct, \quad r = \bar{\alpha} \cdot r' + \gamma \beta ct',
\]
where
\[
\beta = \frac{v}{c}, \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}, \quad \bar{\alpha} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \gamma
\end{bmatrix}.
\]

As outlined in the introduction, the PB is decomposed into there plane wave spectrum constituents. In order to apply Maxwell’s boundary conditions at the S' frame’s $z' = 0$ plane, the propagating PBs are a priori decomposed into TE and TM components with respect to constant z planes at the S frame. Here we present the results for TE PB propagators. Next we transform the fields into the moving S' frame representation using the Lorentz Transformation.
(1) and the Electromagnetic Field Transformation (3)[12].

\[E' = \gamma \tilde{\alpha}^{-1} \cdot E + c\gamma \beta \times B, \]
\[B' = \gamma \tilde{\alpha}^{-1} \cdot B - c^{-1}\gamma \beta \times E, \]
\[D' = \gamma \tilde{\alpha}^{-1} \cdot D + c^{-1}\gamma \beta \times H, \]
\[H' = \gamma \tilde{\alpha}^{-1} \cdot H - c\gamma \beta \times D, \]

(3)

where

\[\beta = \frac{v}{c}, \quad \tilde{\alpha} = \tilde{I} + (\gamma - 1)\beta^{-2}\beta. \]

(4)

In (3), the medium in \(z' < 0 \) is assumed to be vacuum, i.e. \(\epsilon = \epsilon_0 \) and \(\mu = \mu_0 \).

3 TE reflected plane wave

The single transient incident PW at the \(S \) frame is given by

\[E_{PW}^i(\mathbf{r}, t; \kappa_i) = \hat{\mathbf{u}}(\kappa_i) \int [t - c^{-1}(\hat{\kappa}_i \cdot \mathbf{r})], \]
\[H_{PW}^i(\mathbf{r}, t; \kappa_i) = \eta_0^{-1} \hat{\mathbf{t}}(\kappa_i) \int [t - c^{-1}(\hat{\kappa}_i \cdot \mathbf{r})], \]

(5)

where \(\hat{f} \) denotes some analytic signal[13], \(\hat{\kappa}_i = (\xi_1, \xi_1, \zeta) \) is a unit vector with \(\xi_1 \) and \(\xi_2 \) being the transverse spectral variables and \(\zeta = \sqrt{1 - \xi_1^2 - \xi_2^2} \), and

\[\hat{\mathbf{u}}(\kappa_i) = \frac{1}{\kappa_i}(\xi_2 \hat{x} - \xi_1 \hat{y}), \]
\[\hat{\mathbf{t}}(\kappa_i) = \frac{\zeta}{\kappa_i}(\xi_1 \hat{x} + \xi_2 \hat{y}) - \kappa_i \hat{z} \]

(6)

with \(\kappa_i = \sqrt{\xi_1^2 + \xi_2^2} \).

The \(\hat{f} \) argument in (5) is inserted with (1) to produce

\[t - c^{-1}(\hat{\kappa}_i \cdot \mathbf{r}) = \sigma[t' - c^{-1}(\hat{\kappa}_i' \cdot \mathbf{r}')], \]

(7)

where

\[\hat{\kappa}_i' = \frac{\hat{\kappa}_i \cdot \tilde{\alpha} - \gamma \beta}{\gamma(1 - \tilde{\kappa}_i \cdot \beta)} = \frac{1}{\sigma}[(1, 0, \gamma(\zeta - \beta)], \quad \sigma = \gamma(1 - \zeta \beta). \]

(8)

Here \(\hat{\kappa}_i' \) is identified as a unit vector in the direction of propagation in the \(S' \)-frame. By inserting (5) into (3) with (7) we obtain the electric incident field at the \(S' \) frame

\[E_{PW}^i = \frac{\gamma}{\kappa_i}(1 - \beta \zeta)(\xi_2 \hat{x} - \xi_1 \hat{y})f^+ [\sigma(t' - c^{-1}\hat{\kappa}_i' \cdot \mathbf{r}')] \]

(9)

and similarly

\[H_{PW}^i = \frac{1}{\eta_0} \left[\frac{\gamma}{\kappa_i}(\zeta - \beta)(\xi_1 \hat{x} + \xi_2 \hat{y}) - \kappa_i \hat{z} \right] f^+ [\sigma(t' - c^{-1}\hat{\kappa}_i' \cdot \mathbf{r}')] \]

(10)

By applying the standard procedure for PW scattering from planar dielectrics, we obtain snell’s law in \(S' \)

\[\sin \theta_i' = \sin \theta_i, \quad n_2 \sin \theta_i' = \sin \theta_i'. \]

(11)
The resulting reflected PW fields in the S' reference frame are given by

$$E_{PW}' = R' \gamma_{k_t}(1 - \beta \varsigma)(\xi_2 \hat{x} - \xi_2 \hat{y}) f^+[\sigma(t' - c^{-1} \hat{k}' \cdot \hat{r}')],$$

$$H_{PW}' = \frac{R'}{\eta_0 k_t} \left[\frac{-\gamma_{k_t}(\varsigma - \beta)(\xi_1 \hat{x} + \xi_2 \hat{y}) - k_0^2 \hat{z}}{\eta_0 k_t} \right] f^+[\sigma(t' - c^{-1} \hat{k}' \cdot \hat{r}')]$$

(12)

where

$$R' = \frac{\cos^2 \theta' - \cos^2 \theta'' (n_2^2 - \sin^2 \theta'')}{\cos^2 \theta'' + \cos^2 \theta'' (n_2^2 - \sin^2 \theta'')},$$

(13)

is identified as the reflection coefficient and the propagation angle in S' is given by where

$$\cos \theta' = \frac{\varsigma - \beta}{1 - \varsigma \beta} = \frac{\cos \theta'' - \beta}{1 - \beta \cos \theta''}.$$

(14)

4 Reflected Beam Composition

The TE PB propagator can be defined by its transient PW spectral representation in the form

$$\hat{E}^+(r, t) = -\frac{\partial^2}{(2\pi)^2} \int d^2 k_t k_t \frac{1}{k_t} \hat{\psi}(k_t - k_t, t - c^{-1} k_t \cdot r),$$

(15)

where $\hat{\psi}(k_t, \tau)$ denotes the transient PW spectral distribution of the synthesis window $\frac{1}{k_t} \hat{\psi}(r, t)$ and \hat{k} are the frame directional spectral variables. Next we apply the inverse Lorentz transform in (1) to each reflected transient PW in (9)-(10) and insert the resulting PW in S frame into the spectral representation in (15). The resulting spectral representation of the reflected PB is given by

$$\hat{E}^+(r, t) = -\frac{\partial^2}{(2\pi^2)^2} \int d^2 k_t k_t \frac{1}{k_t} \hat{\psi}^+(r, t; k_t) \hat{n}(k_t) R'$$

(16)

where

$$\hat{\psi}^+(r, t; k_t) = \hat{\psi}(k_t - \hat{k}_t, \rho(t - c^{-1} \hat{k}' \cdot r + \tau'))$$

(17)

with

$$\hat{k}' = \frac{1}{\rho} [\xi_1, \xi_2, \gamma^2 (2c - \varsigma (1 + \beta^2)]$$

with

$$\rho = \gamma^2 (1 - 2 \varsigma \beta + \beta^2), \quad \tau' = \frac{(\beta - \varsigma) z_0}{c \gamma (1 - 2 \varsigma \beta + \beta^2)}.$$

(18)

Equation (16) with (17) and (18) represent the reflected electric PB field in S frame.

5 References

