Compact Coplanar Waveguide Fed Ground Meandered Antenna for Wireless Application

Sujith R, S Mridula, C.K Aanandan, K Vasudevan and P Mohanan

Centre for Research in Electromagnetics and Antennas, Department of Electronics, Cochin University of Science and Technology, Cochin, India.

E-mail:- 1. sujithrpkd@gmail.com 2. mridulahari@gmail.com 3. aanand@cusat.ac.in 4. vasudevankdr@gmail.com 5. drmohan@gmail.com

Abstract

A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of $\varepsilon_r = 4.4$ and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line.

1. Introduction

The requirement of compact devices in the present scenario has urged antenna designers to develop very compact structures. The uniplanar characteristics of coplanar waveguide (CPW) devices are suitable for compact applications and hence they are used in Monolithic Microwave Integrated Circuits (MMIC). Various CPW fed antennas are reported with modification on signal strips. A meandered antenna is presented [1] to achieve compactness and moderate impedance bandwidth. An elliptical ring on the farther side of a CPW-fed monopole antenna is used to achieve Ultra Wide Bandwidth [2]. The major axis of the elliptical ring is successfully extended to get the wide band performance. A stacked T-shaped monopole of different sizes, to generate two separate resonant modes for the desired dual band operations, is presented in [3]. A narrow slot at the end of a CPW in [4] and a CPW fed monopole antenna in [5] are used to couple electromagnetic energy to dielectric resonators for achieving required impedance matching.

The lateral ground plane, signal strip dimensions and the feed point of a coplanar waveguide is modified to develop a dual band antenna for WLAN application in [6]. A novel dual band CPW-fed hybrid antenna consisting of a CPW-fed inductive slot antenna and a dual inverted-F monopole antenna is also proposed [7]. The ground plane modifications on coplanar waveguide have also been done to achieve good antenna performance. The ground modified antennas presented in [8-9] are either capacitively or inductively fed to achieve single resonance. The ground modified harmonic suppressed antenna [10] is also reported from authors group. All the aforementioned antennas are either large in size or complex in structure, for use in modern communication gadgets.

In this paper, a compact planar antenna obtained by meandering the CPW transmission line ground plane is discussed. This antenna has an overall dimension of 10x 22x1.6mm3 with very low cross polar isolation level.

2. Antenna Geometry

The geometry of the proposed CPW fed ground meandered antenna is shown in figure1 (a). The strip width (W) and gap (g) of CPW feed line are designed for 50Ω using standard design equations [11].The ground plane is meandered by modifying the transmission line to make it a half wavelength symmetrical radiating element. This is achieved by creating a slit as in the figure(S= 0.5mm, P=1mm, W=1mm and g=0.65mm) on the ground strip of length L. The antenna is fabricated on a substrate of relative permittivity (ε_r) 4.4 and thickness (h) 1.6mm. The...
overall dimension (10mmX22mm=220mm2) of the antenna is very less compared to a conventional monopole antenna (36mmX41mm=1476mm2) fabricated on the same substrate.

![Antenna Geometry](image)

Figure. 1. Antenna geometry (L$_1$=18, L$_g$=3, w=3, g$_1$=0.65, g$_2$=1.5, ws=1, p=1, g=0.35, s=1, wg=3.15, h=1.6, ε_r=4.4(all length are in mm)) a) Front View b) Side View

3. Results and Discussions:

The evolution of the antenna together with the reflection characteristics are shown in figure 2. The structure begins with a normal coplanar waveguide transmission line (Figure 2(a)) which has no resonance from 1 to 10 GHz as shown in figure 2(d). This is acting as an open ended CPW. The above system can be transformed to a radiator using the geometry in figure 2(b) (Antenna 1). Antenna 1 is obtained by inserting slot in the ground plane symmetrically. This produces a resonance at 2.3GHz as shown in the figure 2(d). However, this resonance is radiating but not matched. The matching may be improved by increasing the ground plane dimension without affecting the overall compactness resulting in Antenna 2 (figure 2(c)). Since the effective radiating length of antenna 2 is reduced, a matched resonance is obtained at 2.44GHz. Even though the matching is improved, antenna 2 has low bandwidth. The performance of the antenna can be improved further by modifying the ground plane as in figure 1 resulting in the optimized structure (Antenna3).

![Antenna Evolutions](image)

Figure 2 Antenna Evolutions (a) CPW Tx-Line (b) Antenna 1 (c) Antenna 2 (d) Reflection characteristics

The simulated (Ansoft HFSS) and measured (HP8510C Network Analyzer) reflection characteristics of the optimized antenna shown in figure 3 are in good agreement. The antenna operates from 2.38GHz-2.68GHz with
12% bandwidth. The measured 300MHz bandwidth is wide enough to cover the 2.4GHz band for WLAN application. Moreover, the frequency can be tuned by changing the length of the symmetrically meandered ground strips. It is found that the total length of the meandered strip \((2L_1+W_s+P)\) on one ground plane is nearly \(0.50\lambda_g\), where \(\lambda_g\) is the wavelength in substrate corresponding to the resonant frequency.

From the simulation studies, it is found that the vertical electric field component (\(Y\)-directed) on both the lateral ground plane dominates the horizontal component, resulting in \(y\)-polarized antenna. The radiation pattern of the antenna is shown in figure 4. A nondirectional pattern in the H-plane and a figure of eight pattern in the E-plane are observed as in a CPW fed monopole antenna. The electric field components along \(y\)-direction are added together at the far field resulting a cross polar isolation better than 15dB along the bore sight direction.

The current distribution of the antenna at resonant frequency is shown in figure 5(a) which clearly confirms the half wavelength variation along the meandered strips. A prototype of the fabricated antenna is shown in figure 5(b). This ground meandered antenna has a size reduction of more than 85% compared to a standard CPW fed quarter wavelength monopole antenna. The average gain of the antenna is 1.3dBi in the operating frequency band.
4. Conclusion

A compact coplanar waveguide fed antenna operating in the 2.4GHz WLAN band with 300MHz 2:1 VSWR bandwidth is presented and discussed. The antenna offers a size reduction of more than 85% compared to a standard CPW fed quarter wavelength monopole antenna. Moreover, the antenna provides a 15dB cross polar level along the bore sight direction with an average gain of 1.3dBi and an efficiency of 75%.

5. References