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Abstract 
 
 Schumann resonances (SR) are global electromagnetic resonances excited by lightning discharges between 
the Earth and the ionosphere. SR serve as a passive global monitoring tool, and as such have numerous applications 
in lightning, climate and ionosphere research. All of these applications rely on proper interpretation of experimental 
data. It is vital to understand and correctly interpret the major features of SR records. The best documented and the 
most debated features of the SR phenomenon are the diurnal variations of the background SR power spectrum. 
While it is generally realized that these variations are related to the global thunderstorm activity, the structure and 
timing of the diurnal amplitude variations led to a suggestion that they are strongly influenced by day-night 
variations in the ionosphere. Here we describe a possible mechanism of the observed SR diurnal amplitude 
variations, which can explain their structure without invoking the ionosphere day-night asymmetry. 
 

1. Introduction 
 
 Schumann resonances (SR) are global electromagnetic resonances in the extremely low frequency (ELF) 
range.  Excited by lightning discharges in the cavity formed by the Earth surface and the ionosphere, SR records 
reflect the global thunderstorm activity and therefore serve as a passive global lightning activity monitoring tool. 
Owing to the connection between lightning activity and the Earth's climate, SR may be used to monitor global 
temperature variations [1] and variations of upper tropospheric water vapor [2, 3]. SR has been used for research and 
monitoring of the lower ionosphere on Earth and was suggested for exploration of lower ionosphere and lightning 
activity on celestial bodies [4-6]. SR are used for monitoring transient luminous events – sprites and elves [7-10]. A 
new field of interest using SR is related to short-term earthquake prediction [11-13]. There are many more SR 
applications [14], and all rely on understanding and proper interpretation of experimental SR data.  
 
 The best documented and the most debated features of the Schumann resonance phenomenon are the diurnal 
variations of the background SR power spectrum. The first investigators realized that SR field power variations were 
related to global thunderstorm activity and the observed diurnal variations were explained by the variations in the 
source-receiver geometry [15-17]. Figure 1a shows 4-year mean diurnal and seasonal amplitude variations in the 
electric field of the first SR mode for Mitzpe-Ramon station (adapted from figure 4 in [18]). When plotted in this 
way, a characteristic lens-shape pattern of the diurnal and seasonal variations is revealed, which strongly resembles 
the shape of the terminator (the day-night transition). While such variations may be explained by the migration of 
thunderstorms [19], the structure and timing of the diurnal amplitude variations led to a suggestion that they are 
strongly influenced by day-night variations in the ionosphere [18, 20].  
 
 Ionosphere-induced variations are expected to follow accurately sunrise and sunset times from day to day and 
from season to season. There are records that indeed follow this pattern rather accurately [21]. However such 
behavior is pertinent to many, but not all daily records. There are numerous days when SR amplitudes do not 
increase at sunrise or do not decrease at sunset. Two specific examples are shown on Figure 1b which presents two 
diurnal records of the first SR mode amplitudes at Mitzpe Ramon, Israel made on 5 and 23 January 2000. It is 
apparent that on these two days amplitude variations are not connected to sunrise/sunset times. Such days are too 
many to be discarded as “bad records”. The most plausible explanation is that on these days variations caused by 
lightning activity overwhelmed the ionosphere-induced variations. However, these days do not exhibit higher SR 
amplitudes, or stronger diurnal amplitude variations. Neither the lightning activity was unusually high or unusually 
variable. It is also doubtful that ionosphere day-night variations were significantly weaker on these days. This 



suggests that variations in SR records caused by lightning activity should typically overwhelm the ionosphere-
induced variations, which agree with the earlier [22, 23] and more resent theoretical results [24, 25]. This contradicts 
the ionosphere-dominated explanation of the observed SR behavior and supports the thunderstorm migration 
hypothesis. 
 
 Below we use conventional concepts of lightning climatology and model simulations to describe a possible 
mechanism that can shape the lens-like pattern in SR amplitude variations presented on a diurnal-seasonal scale, 
without invoking the ionosphere asymmetry. 

a. 
 

8Hz Ez 1999-2002 mean 

 

b. 
 

0 2 4 6 8 10 12 14 16 18 20 22
0.4

0.5

0.6

0.7

0.8

0.9

1.0 sunset

sunrise

 

23
 Ja

n

23
 Ja

n

05
 Ja

n

E Z a
m

pl
itu

de
 [a

u]

LT [hours]

  05 Jan 2000  23 Jan 2000

05
 Ja

n

 
Figure 1: First SR mode EZ amplitudes recorded at Mitzpe Ramon, Israel. a. 4-year mean (adapted from figure 4 in 
[18]); b. Diurnal records on 5 and 23 Jan 2000. 

 
3. Model Setup 

 
 To calculate SR amplitudes, we use a uniform Two Dimensional Telegraph Equation (TDTE) model, 
described in great detail in a series of papers [25-30]. As in [6, 25,30], the lower ionosphere conductivity profile is 
approximated with the “knee” model suggested in [31], which accounts for an important intermediate section of the 
conductivity profile. Exact model setup and model variables are the same as in [30]. It should be emphasized, that 
the model used here is a uniform model and as such cannot include lateral height variations of the real cavity. 
Therefore the diurnal-seasonal amplitude variations calculated with this model depend only on the source-receiver 
distance, without accounting for the day-night asymmetry, and hence cannot be influenced by the diurnal ionosphere 
variations – a property unachievable in the real waveguide. By comparing the amplitude variations calculated in a 
uniform cavity with the ones obtained from experimental data, it is possible to conclude whether diurnal changes of 
the ionosphere are necessary to explain the major properties of the experimentally observed diurnal SR amplitude 
variations. 

  For global lightning activity representation we used 5 years (1995–2000) of Optical Transient Detector 
(OTD) lightning data, available at http://ghrc.msfc.nasa.gov/. The OTD is a space based optical sensor on an orbit 
inclined by 70o with respect to the equator [32]. To obtain representation of diurnal lightning activity, OTD orbital 
data was assembled to monthly diurnal data with hourly time resolution [25,30]. In addition, two simple artificial 
models were used to check the origin of the lens-like pattern [25]. “Follow the Sun” (FS) model exploits the fact that 
tropical thunderstorms develop predominantly in the afternoon: in this model there is only a single point source that 
moves following the sun with 3hr delay. “Follow the Sun Over the Continents” (FSOC) model “corrects” the FS 
model – here the same source is activated only over the continents, since lightning activity is known to be 
concentrated over the land. 

 
3. Results 

 
 Figure 2 shows simulations with FS, FSOC and OTD inputs for the Mitzpe Ramon station. The diurnal-

seasonal variations of SR amplitudes computed with FS model (Figure 2a) have a lens-shaped structure which is 
created as the FS source moves relative to the station, following the sun. Aside from this lens-shaped maximum, FS 
model produces another, weaker, maximum around the local midnight. This is the signal from sources at the station 
antipode, where it is afternoon at this time. The FSOC (Figure 2b) model “turns off” the sources of the FS model, 
whenever they occur over water.  For most stations, including Mitzpe Ramon, this completely wipes-off the 
midnight maximum, since the station antipode is located in the ocean where there is little lightning activity. Part of 



the day-side sources are “turned-off” as well, as they fall into the seas. In reality, thunderstorms are not strictly 
bounded to the continental outlines and extend beyond the land, “re-activating” part of the day sources turned-off in 
FSOC simulations. Moreover, lightning activity is strongest at local afternoon, but it does not necessarily cease 
during the rest of the day, adding sources not accounted for in the FS and FSOC models. Hence a wider, but more 
diffuse lens structure is formed for a global OTD lightning distribution (Figure 2c), which well reproduces the main 
characteristics of the experimental data (Figure 1a).  

 
Note the pronounced asymmetry between the local morning and evening amplitudes in the FSOC model 

(Figure 2b). The local evening amplitude records are much higher. This asymmetry is preserved in amplitudes 
calculated from global lightning distribution (Figure 2c) and is evident in the experimental records (Figure 1a). Such 
behavior is attributed to the local meteorological asymmetry between the dawn and dusk thunderstorms [21] which 
is a property of local thunderstorms, while SR records reflect the global lighting activity. There is always dawn and 
dusk somewhere on the globe. The behavior of local thunderstorm around local sunrise and sunset cannot and 
should not directly explain the global SR records. It is rather a component that, together with the seasonal 
thunderstorm drift and the land-ocean distribution, creates the global lightning activity characteristics which, in turn, 
modified by the nodal structure of the SR fields, define the characteristics of SR records. 
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Figure 2: Diurnal-seasonal variations of the electric field amplitude at Mitzpe Ramon station resulting from FS and 
FSOC models, and OTD lightning distribution (1995-2000 mean) model. 

 
4. Conclusion 

 
The FS and FSOC models help to separate the contribution of different factors to the variations observed in 

SR records. It appears that the lens-shaped structure of the field variations is crafted primarily by the movement of 
the sun. As the sun position changes through the day and through the year, and as thunderstorms move relative to the 
station, the strength of the received signal is altered. The same is true for the antipode of the station. The distribution 
of the land masses, over which the lightning activity is concentrated, further shapes the outline of the SR records. 
Peculiarly, for most stations, their antipodes are located in the ocean, producing only weak signals. Consequently, 
the lens-like pattern in the diurnal-seasonal variations in the SR field amplitudes is crafted by thunderstorm 
migration, driven by the sun motion and land mass distribution, and the major patterns of the observed SR diurnal 
amplitude variations can be reproduced without invoking the ionosphere day-night asymmetry.  
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