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ABSTRACT

In this study we investigate pine forest backscattering-imalnd by using a coherent field scattering model. We generate
multilook data by a novel method for a realistic Scots Pinkndgr model and take a closer look at the probability
density functions of the scattering. Multilook data are gyaed by rotating the tree model randomly around its \artic
axis. We show that coherent field scattering model genesgiskle and a realistic data distribution similar to reaRSA
measurement. The PDF is very close to multidimensional Sanslistribution and, therefore, single averaged conada
matrix of the multilook data describes well the whole ensiem¥/e propose averaged covariance matrix formalism to be
used for study also model output. Usage of covariance mftniralism allows us to use descriptors like target entropy
and alpha, which are commonly used to analyse SAR imageshéfhps also comparison between the model output and
SAR image. We show that entropy and alpha values generatedrbyiethod for Scots Pine forest agree well with values
measured for real forest with similar age and size.

1. INTRODUCTION

Demand for coherent scattering models has grown with themide of fully polarimetric and interferometric measure-
ments. SAR based forest remote sensing needs models whittandle phase information precisely in order to response
to wider use of polarimetric and interferometric data. $aMmodels have recently been developed to simulate micrewa
backscattering from forest canopy. In [1] Saatchi and Mc&dmliscussed coherent effects in microwave backscatterin
models for forest canopies. Lin and Sarabandi have presanteherent backscattering model for forest [2] and used it
to investigate polarimetric and interferometric respari8g Thirion et al. [4] applied a coherent scattering mddedim-
ulate backscattering from a mangrove forest. In [5] Papathsiou and Cloude show the possibilities of interferoimetr
polarimetry where the fully coherent signal plays the kdg.ro

Theoretically, a fully coherent scattering model can dbscthe electromagenetic wave interaction with an obje@ in
physically exact way. However, for complex targets, theezeht model generates also speckle. When modeling the
scattering from a tree for L- or C-band with a fully cohererddel, the reflections from the complex structure sum up
coherently with virtually random phase, enhancing or cingehe resulting wave amplitude. This means that the model
output depends drastically on target orientation, shapkireident and scattering direction. In such a case, a single
backscattering value in a certain direction is not very iinfative in order to describe the target under the obsenvatio
Generally, when dealing with variables of random nature shveuld investigate the probability density function of the
variable. Here we propose a method to generate and investigaobability density function of simulated scatteriog f

a tree. We propose that by rotating the tree model arounddheal axis, we can generate a represenative collection



of virtual looks for a given tree type and incident and scattpangle. We also show by an example that the generated
probability density function is similar to SAR single lookta. Its statistical characteristics are similar to resililts from
measurements. By using this method one can generate stabt®Be free estimates for backscattering for homogeneous
forest areas.

2. MODELING THE SCATTERING FROM A TREE

In this section we describe the scattering model and theagti model for the tree. The scattering model we use is a
straightforward field computational model, making use @f ttuncated infinite cylinder approximation [6]. The model
is based mostly on published material. The applicable faqu domain is restricted mainly by the infinite cylinder
approximation. Several novel calculation techniques ntakemodel very fast. The model takes into account direct
reflections from cylinders to observation direction andaisflections from the ground. The scatterer is modeled as a
collection of dielectrically homogeneous cylinders oviglettric half space. The object is illuminated with a plaveve

and coherent sum of direct and ground reflection compongtd¢ulated in the far field zone for the chosen observation
direction. The model is fully coherent, fully polarimet@and bistatic, allowing to choose illumination and scattgri
direction freely. The model gives good results for objedtere higher order scattering has a small contribution.

As a scatterer, we use a cylinder model for 45 year old Scois @inus Sylvestris). The model tree is generated by the
LIGNUM tree growth model [8]. The LIGNUM model is based on enxsive studies of tree growth in Finland and it is
able to generate very detailed tree models. In order to Itveecomputational load, we have simplified the tree model
by leaving out the needles. We believe that we can do that4oard without seriously affecting the results we present.
Ground is modeled as a layered half-space instead of usirmy@ malistic random surface model like in [7]. By feeding
the coordinates of the cylinders, their dimensions ancedtdk properties into the scattering model and choosieg th
direction of incident plane wave and observing directiour, model produces scattering matrices in a chosen direction
for direct scattering and ground reflections. The model areanade for L- band. As complex relative permittivities for
the cylinders and the soil we used.. = 15 + 5i and ;1 = 7 + 1i, respectively, which should describe snow covered
ground in winter conditions according to [9] and [10]. Vadugere chosen for comparison with existing EMISAR data.

3. GENERATING THE MULTILOOK DATA

Before we set up the backscattering simulation, let’s takser look at how the incident wave scatters from the tree
to different directions according to our model. Let’s fix timeident wave direction and calculate the response in all
scattering directions in thiXZ plane. The scattering amplitude of this simulation is pnése in Figure??. We can
notice a very sharp scattering peak in the exact backsireftdirection. This is caused by the fact that the ground is
modeled as a smooth surface exactly perpendicular to tedrtrak. In reality, due to ground and tree trunk roughness,
the backscattering peak very seldom hits the receiver asgltr as in an idealized mathematical model. This peak
disturbs seriously our backscattering simulation. To @wvbis non-natural peak we set38 difference between the
incident and scattered directions. This tilting affects threct scattering contribution very little, but avoid® tbharp
specular reflection peak. We found that in the simulatiorsdirangement eliminates the non-realistic strong greund
tree (or tree-ground) backscattering peak. The followimgusations we made using this semi-monostatic setup. In
Fig. 2 the backscattering amplitude is presented as a fimcii the azimuth direction. As it is seen in figures, the
simulated scattering matrix values are very sensitivedamtiientation of the tree and the receiver. Let’s reviewflyrihe
statistical theory behind the SAR measurements. The adBumgf a great number of scatterers in a resolution cellesaus

a coherent scattering measurement to behave accordingltidimansional zero mean complex Gaussian distribution
[11]. In[12] it is found that the L-band polarimetric datar fwoniferous forest follows mostly the Gaussian distribnti
However, for longer wavelengths, the presence of textung giee rise to effects, which can be modeled better with the
multivariateK distribution [11], which includes the Gaussian distribatas a special case. Note that this should be true
for both, monostatic and bistatic measurement. The muititeaGaussian pdf is completely described by its covaganc
matrix. TheK distribution needs additional parameters for texture.g@quently, a covariance matrix estimate is a good
description of a distributed homogeneous scatterer arglviidely used in radar polarimetry.The averaged covariance
matrix preserves information on average power and averhgeepdifferences between scattering matrix elements but
ignores the absolute phase information.

To inspect the PDF of the scattering in our modeling setupstveelld generate a sufficient amount of independent samples
from the same measurement setup. We propose that the sashpldd be collected by rotating the tree model around the
vertical axis randomly. In this case all the imaging pararsetemain constant. By assuming that interactive reflestio
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Figure 1: Bistatic scattering from the tree as a functionh&f polar angle at L-band, HH polarization. The incident
direction, marked by the red line, is fixed to have polar a @AgE 50° and azimuth angle = 180° pointing to the
origin. The left side panel shows direct scattering, thedigighanel ground bounce contributions (green for grouad-tr
and magenta for tree-ground reflection), and the right sadeepthe total scattering. The ground bounce terms and total
scattering are presented only for directions above thergtotihe most prominent features in the direct scatteringrdia

are the forward scattering peak and the trunk reflection p&hk reflections of the same peaks can be identified in the
other two diagrams.
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Figure 2: Monostatic backscattering from the tree as a fanaf the azimuth angle of the scattering direction at L<han
HH polarization. The difference in elevation between thédl source and the receiverd$. The polar angle i8 = 50°.
The left side panel shows direct backscattering, the mipdiesl ground bounce contributions (green for ground-tnele a
magneta for tree-ground reflection), and the right side [thedotal backscattering.
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Figure 3: Histograms of the modeled scattering amplitudktha phase differences for different polarizations at héba
for or monostatic setup withP separated source and receiver. Histograms are generatebiyg the tree and calculating
the scattering matrix in one degree steps. The solid limgesent the probability density functions that corresporttie

distributed random scatterer assumption. Critjcalalue for 25 degrees of freedom and at 95% confidence levél% 3



between trees are very small, we can treat the covariancxraatraged over the directions of a single tree also repres
tative for a larger homogeneous forest area. The modeltfofésentical trees which are randomly rotated around z-axi
gives the same averaged covariance matrix, because thearmeamatrix does not take into account the absolute phase.
In Fig. 3 we compare the total scattering amplitude histogrand the theoretical probability densities. The ampditud
(absolute value) of a scattering should follow the Rayladggiribution (marginal distribution of Gaussian disttiiioun)

and phase difference distribution can be found from [11]. wescan note, the histograms follow the theoretical lines
rather well and we may conclude that the ensemble of saagtenatrices obtained above is sufficiently well represented
by the averaged covariance mat@x This averaged covariance matrix provides a simple way topare simulation
results with polarimetric SAR data.

4. RESULTSAND DISCUSSION

In order to compare our results with SAR measurements, walleab polarimetric target entropy and alpha angle for
simulated covariance matrix. Our results gide= 0.84 anda = 47° for a 45-year old sparse Scots Pine stand; these
are very realistic values despite the fact that our tree wadated without needles and we had to use a slightly bistatic
arrangement to avoid the problems caused by perfectly $mgraund in our model. However, we believe that the

proposed method provides an interesting possibility terjret the time domain field model calculations for trees and
bring us closer to understanding of scattering inside astar@nopy.
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