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ABSTRACT

A general mathematical framework for N -level Maxwell-Bloch systems is described. This model differs
from standard models for 2-level systems in a number of respects which are quite significant for the search
for more general integrable models of nonlinear electrodynamics. The fundamental formulation is in terms of
the vector potential coupling to the atomic dipoles. The full time-domain behaviour of the wave is retained
throughout, there being no decomposition into carrier and envelope parts with an associated assumption of
different timescales for the two. The integrability of these systems depends on a symmetry under automorphism
of an underlying Lie algebra.

INTRODUCTION

Maxwell-Bloch (MB) systems are generically composed of coupled systems of Maxwell equations and funda-
mental quantum-mechanical dynamical systems. They describe electromagnetic waves in general atomic media,
including the effects of dispersion, dissipation, external pumping, active and passive nonlinearity and even res-
onance. Usually, they have been studied under restrictions to 1-dimensional wave propagation (plane waves)
and simplified quantum models such as an ensemble of independent 2-level atoms, but are sufficiently generic
to model a wide class of phenomena where electromagnetic waves interact with a material medium.

The development of mathematical techniques of solution of MB systems is almost completely unexplored
beyond the case of 1-dimensional wave + 2-level atoms, despite the universality of this description of important
electromagnetic wave phenomena. Even so, it is known that even the simplest of these models may be exactly
integrable under certain conditions which include resonance of the wave with atomic transitions of the medium,
but which neglect dissipation. These resonant models include the phenomenon of self-induced transparency
(SIT) [1]. Under off-resonance conditions, after extracting the rapidly oscillating carrier and approximating
the off-resonant atomic dynamics by multiple-scale asymptotic techniques, elementary MB systems reduce to
Nonlinear Schrodinger Equations (NSE) for the wave envelope; the NSE is similarly known to be completely
integrable, with a particularly extensive literature.

Nonlinear wave systems of the completely integrable type are of particular interest because their solutions
can be constructed explicitly for arbitrary initial conditions using the well-known Inverse Scattering Transform.
Integrable systems may exhibit soliton phenomena, which are of particular importance in the study of ultra-
fast (sub-picosecond) interactions in nonlinear optics. Solitons can be generated mathematically by means of
Backlund Transformations.

In this paper a general mathematical framework for N -level Maxwell-Bloch systems will be described, based
on the structure of integrable models which are already known. This model differs from standard models for 2-
level systems in a number of respects which are quite significant for the search for more general integrable models
of nonlinear electrodynamics. First, the fundamental formulation is in terms of the vector potential coupling to
the atomic dipoles, so-called minimal replacement coupling, rather than the conventional electric dipole coupling
that has been universally used in the 2-level cases. It has already been noted elsewhere that the nonlinear optics
of nonresonant finite-dimensional quantum systems may differ quantitatively depending on whether the vector
potential or electric field defines the coupling [2]. A further difference between the new model and most classical
2-level models is the fact that the full time-domain behaviour of the wave is retained throughout, there being no
decomposition into carrier and envelope parts with an associated assumption of different timescales for the two.
Finally, the integrability of these systems depends on a symmetry under automorphism of an underlying Lie
algebra, a subtle and elegant mathematical feature which is completely new in the treatment of electrodynamical



problems. Some new cases of completely integrable systems exhibiting electromagnetic wave temporal solitons
are presented, including the case of arbitrary elliptical optical polarisation, so-called vector solitons.

N-LEVEL MAXWELL-BLOCH SYSTEMS

The equations governing a spatially homogeneous ensemble of N -level quantum systems (bound electrons
in atoms) interacting with a plane electromagnetic wave consist of the Liouville equation for the dynamics of
the quantum density matrix, and Maxwell’s equations for the electromagnetic field

ih̄∂tΓ = [H,Γ], (1)

∂2
zA − c−2∂2

t A = −c−2ε−1
0 ∂tP (2)

where A(z, t) is the vector potential field of the plane wave, assumed to be transverse to the direction of
propagation, P(z, t) is the polarisation density induced in the atomic ensemble, c is the velocity of light in
vacuo, Γ is the N ×N density matrix, and H is the N ×N Hamiltonian matrix given by

H = H0 +
e

m
p · A (3)

where H0 is the diagonal matrix of electron eigenenergies, −e and m are the charge and mass of the electron,
respectively, and p is the momentum matrix. The polarisation density P is given by

P = − 1
2NeTr{ΓQ}, (4)

where N is the number density of atoms, and Q is the dipole displacement operator. The relation between the
matrices p and Q is

p = (ih̄)−1m[Q, H0]. (5)

The only approximation to be introduced in these equations is that the density of atoms in the ensemble is
small, in which case reflected waves can be neglected and the one-way wave approximation results

(∂z + c−1∂t)A =
1

2ε0c
P. (6)

in place of (2). By substituting the shifted time variable τ = t− z/c, equations (1) and (6) reduce to

ih̄∂τΓ = [H,Γ] (7)

∂zA =
1

2ε0c
P, (8)

which are the N-level reduced Maxwell-Bloch (RMB) equations.

Several special cases of (7)–(8) are already known to be completely integrable. The earliest example of an
integrable system based on (7)–(8) was given in [1], for N = 2. Recently [3], a rotationally symmetric version
with N = 3 has been shown to be integrable with vector solitons. It has also been shown that the integrability
is preserved when a uniform static axial magnetic field is applied, leading to Faraday rotation of the vector
soliton.

The general strategy for investigating integrability depends on the reduction of the MB system to a zero-
curvature form

∂zU − ∂τV + [U, V ] = 0 (9)

for two matrices U and V which depend on a parameter ζ, so that (9) holds identically for all ζ. The parameter
ζ may be introduced quite naturally because the density matrix and the hamiltonian are elements of the Lie
algebra su(N), and su(N) possesses inner automorphisms which preserve all its commutator relations. The
general inner automorphism is X → −X†, where X represents any element of su(N). In a basis of su(N)
X ∈ su(N) = i

∑
j Xjλj consisting of elements λj which are either pure real or pure imaginary and real

coefficients Xj , the inner automorphism consists of changing the sign of all real λj , while leaving unchanged all



imaginary λj . There are 1
2N(N − 1) imaginary off-diagonal basis elements, 1

2N(N − 1) off-diagonal real basis
elements, and N − 1 real diagonal elements in the matrix representation of su(N). Under this automorphism,
the density matrix and the Hamiltonian split into two components which are symmetric or antisymmetric:

ρ = ρ+ + ζρ− (10)
H = H+ + ζH− (11)

ρ− =

1
2N(N−1)∑

j=1

ρjλj , ρ+ =
N2−1∑

j=
1
2N(N−1)+1

ρjλj , (12)

H− =

1
2N(N−1)∑

j=1

Hjλj , H+ =
N2−1∑

j=
1
2N(N−1)+1

Hjλj . (13)

With ζ = ±1 the same sets of real numbers {ρj} and {Hj} satisfy the Liouville equation. Having identified the
automorphism, the definitions of the density matrix and the Hamiltonian can be extended to all values of ζ,
not just ζ = ±1. In particular, we define matrices

U(ζ) = (ih̄)−1(H+ + ζH−), (14)

V (ζ) = i
∑

k

Kk

ζ2 − ζ2
k

(ρ+
k + ζρ−k ) (15)

with some arbitrarily chosen poles ±ζk and amplitudes Kk in the definition of V (ζ). For these two matrices to
satisfy the zero-curvature condition (9) identically, it is required that

∂zH
+ = −i

K∑

k=1

Kk[H−, ρ−k ] (16)

∂zH
− = 0 (17)

ih̄∂τ (ρ+
k ± ζkρ

−
k ) = [(H+ ± ζkH

−), (ρ+
k ± ζkρ

−
k )] (18)

Equation (18) represents a set of Liouville equations for density matrices ρk and Hamiltonians Hk = H++ζkH
−.

Each Hamiltonian Hk corresponds to an atom whose energy eigenvalues are all scaled by the same factor ζk

but are otherwise identical; this is a model for inhomogeneous broadening of the resonant optical transition.
In all cases arising from optical interactions, the antisymmetric component of the Hamiltonian H− is constant,
and so (17) is automatically satisfied. For the symmetric component H+, it is noted that the momentum
matrix elements are pure imaginary, so this component is just H+ = (e/m)p · A = (e/m)

∑
j=x,y pjAjσj ,

where σj =
∑N

k=1 cjkλk is the unit momentum matrix for dipole coupling along the cartesian axis j = x, y. The
elements of H− are pure real diagonal, and therefore H− commutes with the diagonal elements of ρ−k , which
may consequently be ignored in the commutator on the right of (16). The final reduction of (16) is obtained by
projecting both sides onto the dipole matrices σj , using the Lie algebra inner product 1

2Tr{σiσj} = δij :

epj

m
∂zAj = 1

2 i
K∑

k=1

KkTr{ρ−k [H−, σj ]} (19)

which, after multiplying both sides by pj and using (5), reduces to

ep2
j∂zAj = − 1

2 h̄
−1m2

K∑

k=1

KkTr{ρ−k [H−, [H−, Qj ]}. (20)

Usually for optical Hamiltonians [H−, [H−, Qj ] = γjQj with real positive constants γj , so

∂zAj = −m2γj

eh̄p2
j

K∑

k=1

Kk〈Qj〉k (21)



where 〈Qj〉k = 1
2Tr{ρ−k Qj}. Equation (21) is similar to the Maxwell equation for coupling of an electromagnetic

field to an anisotropic homogeneous ensemble of K different kinds of atoms such that the macroscopic polari-
sation density induced by the mixture is proportional to the right-hand side. However, the normal appearance
of the one-way wave equation does not have the orientation-dependent constants preceding the macroscopic
average on the right-hand side. These constants only become independent of the axis j when certain symmetry
conditions are present.

Generally there are more elements in H+, 1
2N(N − 1) in number, than there are cartesian coordinates, 2 in

number, for the transverse field A. Hence there are 1
2N(N − 1) − 2 constraints implied by (16):

0 = 1
2 i

K∑

k=1

KkTr{ρ−k [H−, σj ]}, 3 ≤ j ≤ 1
2N(N − 1), (22)

where it is assumed that {σj : 1 ≤ j ≤ 1
2N(N − 1) form an orthonormal basis for the symmetric part of the

Lie algebra, with σ1 and σ2 chosen to represent the momentum along x and y respectively. These constraints
severely restrict the systems integrable by this method. For example, for N = 3 the constraint [H−, σ3] = 0
means that the two excited energy levels in the 3-level system must have equal energies, i.e. they are degenerate.
When the energy levels are degenerate, the coefficients γ1,2 are identical. For an isotropic medium, the pj and
γj are independent of j: p1,2 = p and γ1,2 = γ. In this case the system reduces to

∂zAj = − e

2cε0

K∑

k=1

Nk〈Qj〉k (23)

with the choice of

Kk =
Nkh̄p

2e2

2m2γcε0
(24)

with Nk the number density of the k-th atomic species. Equation (23) is the correct Maxwell equation for the
potential coupled to two orthogonal dipoles with rotational symmetry.

CONCLUSIONS

A method of constructing nonlinear integrable systems from combinations of the one-way Maxwell wave
equation and simple N -level quantum-electronic systems has been described, with an attempt to gain some
generality. Certain properties of Lie algebras, such as inner automorphisms, are fairly central to the theory, and
this is the first time that such tools have been required in electrodynamics. The system (23) describes one-way
propagation of a polarised electromagnetic wave in an isotropic inhomogeneously broadened atomic medium,
with rotational symmetry about the z-axis. The inhomogeneous broadening is described by the variation of the
diagonal part of the Hamiltonian by the factor ζk, with the coefficients Nk representing the number density of
the k-th component of the mixture. Inhomogeneous broadening is inessential for the integrability of the system,
this property being preserved in the case K = 1. Despite the constraints introduced to make the integrable
system correspond to a physical system, the integrable system has a wide range of realisations in physical media.
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