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M OTIVATION

The contribution deals with the efficient numerical evaluation of the electromagnetic field within a semi-infinite tapered
TEM-waveguide partially filled with an arbitrary object. The investigation of this problem is mainly motivated by the
benefit which could arise from a systematic study of this class of geometries for the judgement of the reliability of so-called
GTEM cells; these are widely used in EMC practice for the measurement of both the electromagnetic emission from and
the susceptibility of relatively small devices under test (DUT). Since such GTEM cells promise to work up to frequencies
in the GHz region, and their dimensions are about 6 meters in length, a purely numerical method is expensive and, as
will be shown, unnecessary. Moreover the proposed hybrid modal-analysis & Method-of-Moments approach could be
of general interest for the efficient simulation of mainly homogeneous waveguides that have an arbitrary inhomogeneous
part.

FORMULATION AND SOLUTION OF THE BOUNDARY-VALUE PROBLEM

As a first step the two-dimensional problem is treated: Consider a perfectly electrically conducting (PEC) DUT, located
in the interior of a wedge with PEC walls, where the DUT, the wedge and a (line) source distribution do not depend of the
direction parallel to the wedge’s edge. This two-dimensional problem is well suited for the evaluation of the algorithm.
Moreover, it allows an insight into the processes within such a cell; in particular the undesired interaction between the cell
and the DUT can be studied systematically. It is noted that the method can be generalized to the three-dimensional case,
e.g., while treating a conical TEM-waveguide with elliptic cross-section and a sector-like inner conductor.

There is only a very small part of the cell occupied by the DUT, while the main part is empty. To take advantage of this
fact, we first split the cell into three domains as shown in Fig. 1.

Using a plane polar coordinate system(R,ϕ) with the origin at the wedge’s edge, the domainsI, II andIII are defined
as seen from Fig. 1. DomainsI andII are empty, while domainIII surrounds the DUT. The electromagnetic field
component perpendicular to the shown plane is denoted byΨ and must satisfy the scalar Helmholtz equation within the
domains and the Dirichlet- or the Neumann condition at the metallic boundaries. Furthermore,Ψ has to be continuous
through the interfacesC1 andC2 between the domains. A time factore+jωt is assumed and omitted throughout the
analysis.

For PartI andII of the cell, we describeΨ by means of a modal analysis
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where the sine- and the cosine functions are to be used for the Dirichlet- and for the Neumann case, respectively.H
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Fig. 1: Subdivision of the cell
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n are the known amplitudes of the incident fields, whereas the amplitudesaI sc
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scattered fields are to be determined. While exploiting Green’s second identity and provided that there are no sources
within domainIII (susceptibility test) we representΨ within domainIII by

ΨIII(~R ) =
∮
C

[
G(~R , ~R ′)

∂

∂n′
ΨIII(~R ′)−ΨIII(~R ′)

∂

∂n′
G(~R , ~R ′)

]
ds′, (3)

whereC = C1 + C2 + C3, n̂′ is the normal outward-directing unit vector onC andG(~R , ~R ′) denotes the free-space
Green’s function. If the field point in (3) matches the boundaryC, we obtain a field integral equation. Since in the
Dirichlet case it holdsΨIII
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only one part of the two in the integrand of (3) is non-zero in each case; the unknown in the other part is approximated by
a set of sub-domain basic functions. OnC1 andC2, ΨIII and(∂/∂n′)ΨIII are due to the continuity conditions obtained
directly as Fourier series from (1) and (2).

Using the MoM we transform the problem into a matrix equation ([1, 3, 4]. If the coupling integrals involve only the
sub-domain expansions onC3, the closed form of the free-space Green’s function
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is employed; the testing onC3 is performed with usual point-matching. For the evaluation of the coupling integrals
involving C1 andC2 we use the modal expansion of the free-space Green’s function
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where the abbreviations

R< = min(R,R′) ; R> = max(R,R′) (6)

are introduced. The testing onC1 andC2 is done due to the Galerkin formalism, that is, test functionscos nπ
α ϕ and

sin nπ
α ϕ are employed. This procedure allows an analytical evaluation of the related integrals. The series’ convergence

is ensured because of the behaviors of the Bessel functions and of the coupling integrals. The numerical solution of the
obtained system of linear equations yields the coefficients of the sub-domain basis functions onC3 and, directly, the
scattered-field’s modal coefficientsaI sc

n , aII sc
n in (1) and (2).



VALIDATION AND NUMERICAL RESULTS

The consistency of the proposed method has been successfully validated for the case of an empty cell by inserting the
’problem-adapted’ Green’s function of the wedge, i.e., where the boundary conditions onC3 are automatically fulfilled
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with

εn = 1 if n = 0, andεn = 2 if n = 1, 2, 3, ...

We analytically derive the expected result:aI sc
n = aII inc

n andaII sc
n = aI inc

n . Moreover, this result is also the objective
for the numerical evaluation of the empty-cell case while using the free-space Green’s functions. Also, this case is well
suited for numerical studies to find the optimal parameters and to estimate the number of relevant modes and sub-domain
basis functions which are needed to match the desired accuracy. Moreover, it is worth noting that the attempt to employ the
wedge’s Green’s function [7] for the general numerical solution of the problem (i.e. for the non-empty cell case as well)
fails because of the missing convergence of the related series in case when the source point approaches the observation
point.

The results from first studies with a cylindric DUT, symmetrically located within the domainIII, are represented in
Figures 2 and 3. The observed resonances are due to an interaction between the cell and the cylindrical DUT, and are
obviously corresponding to the distances between the DUT and the cell’s wall.

CONCLUSIONS

A hybrid method based on the modal analysis and on the method of moments is introduced which allows to efficiently
compute the electromagnetic field within a homogeneous waveguide with an arbitrary inhomogeneous part. As an appli-
cation, a two-dimensional model of a partially filled GTEM cell is analyzed. The interactions between the GTEM-cell
walls and the DUT which are responsible for the distortion of the test-field and should be taken into consideration while
using a GTEM-cell, can be studied in detail. Since this is a very fast algorithm, also simulations for the transient case
can be performed while using Fourier-transform techniques. Future work will focus on a comparison between the present
GTEM-results with simulated open-site results. Finally it is worth noting that the method can directly be generalized for
the case of three-dimensional problems, e.g., for a conical elliptical waveguide with an inner sector-like conductor.
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Fig. 2: Amplitude (amount) of the reflected mode
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The incident field is given by the first mode (aIinc

1 = 1), Dirichlet case. Cell withR1 = 1m, R2 = 2m, α = 300.
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Fig. 3: Amplitude (amount) of the reflected mode
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0 = 1), Neumann (TEM-) case. Cell withR1 = 1m, R2 = 2m, α = 300.


