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ABSTRACT

Meteor trails created by the ablation of micro-meteoroids
between 70 and 130 km altitude in the atmosphere create
columns of plasma often with densities that exceed the
ambient ionospheric plasma density by orders of magni-
tude. Density gradients at the edges of these trails can
create ambipolar electric fields with amplitudes in ex-
cess of hundreds of mV/m. These fields, in turn, drive
Farley-Buneman and gradient-drift (FBGD) instabilities
which create field-aligned plasma density irregularities
detectable by large aperture radars. This paper presents a
new theory of meteor trail instabilities and compares this
theory with simulations, observations, and related theo-
ries.

INTRODUCTION AND BACKGROUND

Radars probing the atmosphere between 70 km and
130 km frequently receive echoes from plasma trails left
by passing and disintegrating meteors. These echoes
have proven useful in characterizing small meteors and
in estimating atmospheric temperatures and wind veloci-
ties. Two distinct types of radar echoes return from me-
teor trails. Strong echoes return when the radar point-
ing direction lies perpendicular to the meteoroid’s tra-
jectory, creating a “specular” reflection [4]. Weaker
echoes are frequently observed by highly sensitive, large-
aperture, radars not pointing perpendicular to the trail’s
orientation, creating echoes labeled as “non-specular”
reflections [6, 21]. Non-specular have been attributed
to the Farley–Buneman/gradient–drift (FBGD) instabil-
ity mechanism [6, 5]. In an earlier paper, we used simu-
lations to show that non-specular echoes can easily result
from the FBGD instability which rapidly develops into
plasma turbulence [17]. In a subsequent paper we showed
that FBGD waves develop without an external electric
field and also demonstrated that the waves and turbulence
cause an anomalous diffusion much larger than the ex-
pected cross-field ambipolar diffusion [9]. This paper de-
velops the linear plasma fluid instability theory of these
trails and predicts the altitude range at which one ex-
pects to find field–aligned irregularities (FAI) and there-
fore non–specular meteor trails.

The fundamental behavior of meteor trails and colli-
sionally dominated plasmas has been discussed in many
books and review articles [16, 3, 19]. More specifically, a
number of authors have evaluated the ambipolar diffusion
of meteor trails in collisional plasmas [18, 13]. Most of
our understanding of weakly ionized meteor trails derives

from radar observations and relies on detailed analyses
of the precise interaction between meteor trails and radar
signals [12].

THEORY OF METEOR TRAIL PLASMA

A small meteoroid (<� 10�5 kg) ablating in the upper
atmosphere creates a narrow column of energetic neutrals
and plasma. This column expands rapidly until slowed,
partially ionized, and cooled by collisions. The radius of
the column at the point when it transitions from a rapid ki-
netic expansion to a slower diffusive expansion is called
the initial radius of the trail and it appears to be some-
what smaller than the mean free path length [1, 2]. After
the column reaches this initial radius, the dynamics of the
expanding column of charged particles may be approxi-
mately described as a plasma fluid.

Above 75km in altitude and perpendicular to the geo-
magnetic field,B, electrons are highly magnetized while
ions are de-magnetized by collisions. Hence, as the trail
plasma expands beyond its initial radius, a strong am-
bipolar electric field develops as a result of the differ-
ing ion and electron mobilities. The electrons respond
to this cross-field ambipolar field byE�B–drifting per-
pendicular to bothB and the density gradient of the me-
teor trail. This drift, combined with a diamagnetic drift
caused by the plasma density gradients, can generate an
unstable plasma [10]. This instability leads to the for-
mation of waves which rapidly develop into turbulence.
This field aligned instability also creates plasma density
perturbations visible to radars, allowing for non-specular
radar reflections. Further it causes anomalous diffusion,
effecting the meteor trail’s expansion rate. The following
sections describe how the electric fields, electron drifts,
and instabilities depend upon the altitude and trail den-
sity.

EQUILIBRIUM CONDITION

In order to evaluate the stability of a meteor trail, we must
first define an equilibrium state. We will use the ambipo-
lar expansion of a diffusing plasma column perpendicular
to the magnetic field. We conduct this analysis only in
the plane perpendicular toB and assume that in the plane
parallel toB the trail expands through ambipolar diffu-
sion and is not unstable to plasma instabilities [14]. To
define the equilibrium state we will assume the ions are
an inertialess, isothermal, collisional, and unmagnetized
fluid plasma where

vi = ��ir� �Dirs (1)



and �i;e � e=(mi;e�i;e) defines the ion and electron
mobilities,Di;e � kTi;e=(mi;e�i;e) defines the ion and
electron diffusion rates,� is the electric potential, and
rs � rn=n = r ln(n=nb) defines the gradient of the
log of the plasma density normalized to the background
density,nb. The electrons are an inertialess and mag-
netized fluid whose velocity perpendicular toB can be
expressed as
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vD is the diamagnetic drift, and
e = eB=me is the
electron cyclotron frequency (see [7], p. 171, for an ex-
planation of these terms). For altitudes above 85 km,

2
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and diamagnetic drifts, as described by third term of
eqn. (3).

The assumption of quasi-neutrality,r�J = 0, allows us to
generate an expression for the potential (? toB) in terms
of density,
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whereDT � De? � Di and�T � �e? + �i. This
equation allows us to solve for the cross-field ambipolar
electric potential,�, for a prescribed density distribution,
n, and vise-versa.

In many configurations eqn. 3 becomes easy to evaluate.
One simple trail geometry in Cartesian coordinates aligns
the magnetic field,B, along theŷ direction; allows the
density gradient to vary only alonĝx; and assumes homo-
geneity along botĥy andẑ. While homogeneity alongB
is unrealistic, at high altitudes one expects trails stretched
in the direction parallel toB, so this assumption is not
entirely unrealistic. An alternate geometry which may be
evaluated in cylindrical coordinates aligns the trail paral-
lel toB, leaving a circular cross-section perpendicular to
B. As long asrn is perpendicular toE�B, eqn. (3)
becomes simply,r�(nr�) = DT =�Tr

2n, and may be
easily solved for either slab or cylindrical geometries.

In the case of a slab trail,Ex = �DT
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, whereC
is a constant of integration set by boundary conditions.
If we further assume that the density of the trail is the
sum of a Maxwellian plus a background density,n =
n0 exp (�x

2=x20)+nb, then the ambipolar field becomes
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At 105km, the ion cross-field mobility,�i exceeds the
electron one,�e?. In this case, the electric field points
toward the center of the trail and prevents the ions from
escaping from the magnetized and less mobile electrons.
At different altitudes, the changing collision rates al-
ter the relationship between these mobilities. Below

Figure 1. Velocity vs. altitude assuming parameters from
the international reference ionosphere (IRI) for the equa-
tor. vE�B shows theE�B drift velocity; vrn�B shows
the diamagnetic drift velocity; andve? shows the sum of
the two velocities.

� 100 km (near the equator), the collision rates become
high enough that the electron diffusion rate exceeds the
ion rate causing the ambipolar electric field to reverse di-
rections. The transition altitude whereE shifts from in-
ward to outward pointing depends on latitude because of
the changing geomagnetic field. This altitude also plays
less of a role in the generation of instabilities than one
might expect, because the instability driver results from
the total electron drift speed, which derives from a com-
bination ofE�B and diamagnetic drifts as discussed in
the following section.

ELECTRON DRIFT

Electron drift motion results from the combination of
E�B and diamagnetic drifts where, in the absence of
external electric fields or, equivalently, neutral winds,E
arises from the self-generated ambipolar electric fields.
Combining eqns. (3) and () makes the electron drift ve-
locity
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whereB̂ � B=jBj. In the case where electron motion
lies purely perpendicular torn, this simplifies to

ve? =
C2
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whereC2
s =

p
k(Te + Ti)=mi is the ion acoustic veloc-
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, a ratio that shows up repeatedly in
E-region dynamics. This equation tells us that, regard-
less of the direction ofE, the electrons always drift in
the positivern� B̂ direction. At high altitudesE�B
drifting dominates, but at lower altitudes, asE changes
sign, the electrons continue to drift in the same direction.
This occurs because the diamagnetic drift rate,vD, be-
comes larger, preventing the electrons from reversing di-
rection. Figure 1 compares drift velocities as a function
of altitude for a trail withrs = 1m�1. For larger (or



smaller) values ofrs, the velocities scale linearly with
rs. This rapid drift motion drives the instabilities dis-
cussed in Dyrud et al. [9] and Oppenheim et al. [17].

STABILITY

Linear plasma theory allows us to evaluate the stability of
these meteor trails. Further, it teaches us about the phase
and group velocities and growth or damping of any wave
which might develop within the trail. Since radars are
extremely sensitive to plasma waves, understanding the
characteristics of these waves should allow us to better
understand non–specular radar echoes.

The simplest linear analysis assumes both the electrons
and ions behave as plasma fluids and recreates the dis-
persion relation described in Fejer et al. [11]. To obtain
the dispersion relation, assume inertialess electrons as in
eqn. (3) and quasineutrality as before, but keep ion in-
ertia. The linear, Fourier transformed, ion momentum
equation remains the same as eqn. (1) except�i ! �i�i!
where! is the complex wave frequency. With these as-
sumptions the following relation may be derived:

! � k � ve0 = �A
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wherevi0 andve0 are the equilibrium (drift) velocities
of each species;rs0 � rn0=n0 is the initial density
gradient scale length;ky2 � (k� irs0) � k.

For the case of meteor trails!r often has a similar mag-
nitude as�i and, therefore, one must solve eqn. (7) as a
quadratic equation. Two assumptions allow some simpli-
fication of eqn. (7). IfB = B0ẑ andvi0 is negligible
compared tove0, then

A � 	0=�i � (i=
i)k � rs0�ẑ=k
y2 and

! � k � ve0 = �A[(�i! � i!2) + iky2C2

s ] : (9)

One interesting point follows: In FBGD theory, thek �
ve0 term drives the instability. For meteor trails, with
no driving external electric field, theAik2C2

s term also
contains a real component which always exceeds thek �
ve0 term such that adding the real components of the two
terms yields

<[Aik2C2
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This assumes thatrs0 � k=k2 � 1, which applies when
k represents waves aligned mostly perpendicular to the
gradient,rs.

Though fig. 2 shows increasing growth rates for increas-
ing values ofjkj, the simulation shows a peak wave-
length at� 20 cm. However, the fluid theory ignores
kinetic plasma phenomena. In particular, at these short
wavelengths, we expect ion Landau damping to reduce
the growth rate short wavelength modes [20, 15]. The
fluid equations most accurately represent the physics at
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Figure 2. Shows the real (top) and imaginary (bot-
tom) parts of! as a function of vertical and horizontal
wavenumber,k. Of the two roots the one with the larger
!i is shown and the bottom panel only shows values for
!i > 0.

the longest unstable wavelengths and, in the discussion
below, we will limit ourselves to that case.

CRITERION FOR INSTABILITY ONSET

While eqn. (9) may not be appropriate to predict the
growth rate of the instability for all wavelengths, it does
provide an approximation for the instability threshold.
Figure 3 shows positive growth rates as a function of al-
titude and peak plasma density for meteor trails having a
Maxwellian density profile,n = n0 exp (�r

2=r2
0
) + nb.

To set the crucial scale length,r0, we used two initial ra-
dius measurements: the [2] prediction and the smaller [1]
measurement. To limit the very short wavelength modes,
we required that the instability develop a positive growth
rate for waves longer than twice the Debye length. The
results are only weakly sensitive to changes in this cri-
terion. One can see that the instability growth rate de-
pends strongly on the initial radius and only weakly on
the peak plasma density. The minimum altitude is mostly
determined by the high collision rates and depends only
weakly on meteor parameters.

The maximum instability altitude is set principally by the
initial radius of the trail which determinesrs. The Bron-
shten [2] values allow us to predict instability over a lim-
ited altitude range. The smaller radii predicted by Bag-
galey [1] lead us to predict essentially no ceiling on the
instability altitude.

The observational data appears to predict a limited range
of altitudes over which trails become unstable. The trail
echoes almost invariably span a smaller range of altitudes
than do the associated head echoes. This difference oc-
curs frequently and is discussed in more detail in Close
et al. [8].
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Figure 3. Left panel plots initial radius of trail versus altitude for the Baggaley and Bronshten models. The center panel
shows the predicted growth rate as a function of altitude and peak plasma density,n0=nb, for the radius suggested by the
Bronshten model. The left panel shows the same for the radius suggested by the Baggaley model.

CONCLUSIONS

We have used a fluid description of meteor trail plasma
dynamics to better understand the results from both sim-
ulations and large-aperture radar observations. We have
solved for the equilibrium state of a diffusing meteor trail
perpendicular toB and shown that both the electron dia-
magnetic drift andE�B drift contribute to the total elec-
tron drift. Further, this total electron drift is always in
thern�B direction, even when theE�B drift drives
electrons in the opposite direction.

We then solved the linear, perturbed system of equa-
tions around this equilibrium state, showing that standard
FBGD assumptions do not apply to meteor trails and that
it is necessary to solve the complete quadratic dispersion
relation. Nevertheless, one may use this equation to cal-
culate the range of wavelengths over which instability
may occur and the characteristics of the resulting waves.

Making a number of assumptions about the state of “typ-
ical” meteor trails, we solved this dispersion relation,
showing the limited range of altitudes at which one ex-
pects instability growth. The minimum altitude depends
principally on the composition and latitude of the trail.
The maximum altitude depends primarily on the gradient
scale length of the trail which results from the initial ra-
dius of the meteor trail. We used this dependency to show
that the Bronshten [2] description of initial radius better
matches observations, than the description put forth by
[1].
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