Summer noontime \(h_mF_2 \) long-term trends inferred from \(f_oF_1 \) and \(f_oF_2 \) ionosonde observations in Europe

A.V. Mikhailov\(^{(1)}\), L. Perrone\(^{(2)}\), and V.N. Shubin\(^{(1)}\)

\(^{(1)}\)Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow 142190, Russia

\(^{(2)}\)Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, Roma 00143, Italia

Long-term \(h_mF_2 \) trends may serve as an indicator of the thermosphere cooling due to the CO\(_2\) concentration increase in the Earth’s atmosphere. Unfortunately required long-term reliable \(h_mF_2 \) observations are absent. A new method has been proposed to solve this problem using available monthly median \(f_oF_1 \) and \(f_oF_2 \) ground-based ionosonde observations. Such manually scaled observations are available on European stations for a period of 5 solar cycles. Summer (June) daytime \(f_oF_1 \) observations are used to retrieve: exospheric temperature \(T_{ex} \), neutral composition ([O], [O\(_2\)], [N\(_2\)]) and the total solar EUV flux with \(\lambda < 1050\text{Å} \). Fitting with vertical plasma drift \(W \) (the only unknown parameter) calculated \(f_oF_2 \) to the observed one the height of F2-layer maximum, \(h_mF_2 \) may be found. Such calculations have been done using Sodankylä and Juliusruh \(f_oF_1 \) and \(f_oF_2 \) observations for the (1958-2017) period. Two methods were used to remove solar and geomagnetic activity effects from the retrieved \(h_mF_2 \) long-term variations: i) by a normalization with the Shubin \(h_mF_2 \) monthly median model and b) using a regression with an index \(= F_{10.7}^\alpha + Ap^\beta \), where \(\alpha \) and \(\beta \) are fitted parameters. Both methods give negative statistically significant (at 99% confidence level) trends \(h_mF_2 \) but with different magnitudes: \(\sim 0.7\% \) per decade at Juliusruh and \(\sim 2\% \) per decade at Sodankylä. Over four decades (the period of cooling due to the CO\(_2\) concentration increase) this gives a decrease in \(h_mF_2 \) of \(\sim 8 \) km at Juliusruh and \(\sim 25 \) km at Sodankylä. Both estimates are larger than expected under a 20\% increase in the CO\(_2\) abundance. Possible mechanisms are discussed.