Wideband Digital Technology for Radio Astronomy

Jonathan Weiintroub\(^{(1)}\), David MacMahon\(^{(2)}\)

\(^{(1)}\) Harvard-Smithsonian Center for Astrophysics, http://cfa.harvard.edu/
\(^{(2)}\) Radio Astronomy Lab, University of California Berkeley, http://ral.berkeley.edu/

Abstract

As radio astronomy receiver bandwidth increases, it is necessary to increase the speed of analog-to-digital conversion (ADC) as well as the digital signal processing (DSP) in the telescope’s back end. Otherwise a complex and expensive mixer-filter system is needed, to break the IF bandwidth into smaller blocks for digital sampling and signal processing. Analog-to-digital converters (ADC) capable of sample rates five gigasamples-per-second and faster are now available and DSP technology has been following Moore’s law to provide matching processing power. In current wideband instruments, usable bandwidth blocks \sim2 GHz can be processed digitally, and we envisage a near term future where blocks \sim10 GHz might be handled by a single compact module. This paper reviews ultra-wideband ADC and DSP technology, and describes examples of wideband processing in radio astronomy correlators and phased arrays.

1 Introduction

In a sampled data system the width of a single block of processed bandwidth is set by the ADC sample rate through the Nyquist criterion. If the block is narrow, the processor must be preceded by an IF system with many channels; a so-called “hybrid” implementation, which, if large, is likely to be cost-prohibitive. While digital technology becomes exponentially more economical with time per unit processing power, according to Moore’s law, this law does not apply to analog IF electronics, which typically increases in cost over time. Thus costs of large systems—where the non-recurring cost of high performance design is amortized over many units—are reduced if they are designed with using ADCs which are as fast as possible.

It is necessary that the fast ADC chip must be matched to DSP technologies with commensurate input-output data bandwidth, and processing power. A useful technology is the Field Programmable Gate Array (FPGA). FPGAs are now equipped with asynchronous serializer-deserializer input output devices (SERDES). For the newest \textit{GTY} series of SERDES included on the Xilinx Ultrascale+ family input-output data rates in excess of 30 gigabits-per-second (Gbps) is possible. An essential function of the SERDES is to \textit{demultiplex} the very high bitrate from the fast ADC chip, so that the FPGA, with typical maximum \textit{fabric} speeds of around 500 MHz, can process the data stream in real time over many parallel logic paths. The availability of this fast SERDES silicon intellectual property is one key factor giving the FPGA an edge over Application Specific Integrated Circuits (ASICs) when considered for fast DSP applications—even in relatively high volume radio astronomy applications. Another key benefit is the provision of large numbers of wide fixed point multipliers, with as many as 12,288 \textit{DSP Slices} each equipped with one multiplier in the Xilinx Ultrascale+ VU13P DSP optimized device.

The widest radio bandwidths encountered are typically in the submillimeter region at the high frequency end of the radio spectrum. Wideband techniques are also applicable to direct-RF sampling at lower frequencies. This paper will discuss relevant technologies and techniques using, as examples, submillimeter astronomy developments.

2 The Wideband ADC Landscape

Many ADCs achieve high sample rates by interleaving multiple slower ADC cores. Distortion results from misalignment in offset, gain and phase of the cores, as well as non-linearity. It is possible to align the cores and calibrate non-linearity resulting in substantially improved fidelity. Successful wideband instruments have been designed using multicore ADCs. Still, absent other constraints, single core devices are preferred. The faster the sample rate of an ADC the greater the Nyquist bandwidth, but the ability of an ADC to handle a wideband analog signal is determined by a distinct specification, analog bandwidth. The number of bits of conversion is also key, typically, though, single core fast devices have relatively few bits. We view four bits as effectively the minimum requirements for current instrument development. In case of correlators four bits delivers 99% digital efficiency.

An important document covering the evaluation of the performance of ADCs is IEEE Standard 1241-2010 - Terminology and Test Methods for Analog-to-Digital Converters. For the noiselike signals common in radio astronomy the Noise Power Ratio (NPR) specification is of particular interest. Please see table 1 for a listing of various ADCs with sample rates 5 gigasamples-per-second and greater.
Table 1. Summary table of high speed ADC devices 5 GSa/s and greater, with relevant specifications and pricing

<table>
<thead>
<tr>
<th>f_s (GSa/s)</th>
<th>cores</th>
<th>BW (GHz)</th>
<th>bits</th>
<th>Manuf.</th>
<th>Part #</th>
<th>~cost</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>2.0</td>
<td>8</td>
<td>e2v</td>
<td>EV8AQ160</td>
<td>$300</td>
<td>ASIAA/Jiang SWARM</td>
</tr>
<tr>
<td>6.4</td>
<td>4</td>
<td>>10</td>
<td>12</td>
<td>TI</td>
<td>ADC12DJ3200</td>
<td>$2196</td>
<td>COTS in stock</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>20</td>
<td>4</td>
<td>Adsantec</td>
<td>ASNT7120-KMA</td>
<td>$800</td>
<td>3.5 ENOB, 2W, ZDOK</td>
</tr>
<tr>
<td>12.5</td>
<td>8</td>
<td>8</td>
<td></td>
<td>Tektronix Comp.</td>
<td>—</td>
<td>$17k</td>
<td>formerly Maxtek</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>20</td>
<td>4</td>
<td>Adsantec</td>
<td>ASNT7122-KMA</td>
<td>$1.9k</td>
<td>7120 w/ SERDES, PRBS</td>
</tr>
<tr>
<td>20</td>
<td>4/2</td>
<td>8</td>
<td>5</td>
<td>e2v</td>
<td>EV5AS210</td>
<td>$7k</td>
<td>used for NOEMA, cont.</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>8</td>
<td></td>
<td>Keysight</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>10</td>
<td>3+offlow</td>
<td>Analog Dev.</td>
<td>HMC5401LC5</td>
<td>$2.86k</td>
<td>was Hittite, SAO eval. bd.</td>
</tr>
<tr>
<td>20</td>
<td>4/5</td>
<td>6</td>
<td></td>
<td>Pacific Microchip</td>
<td>SBIR</td>
<td>$3-5k</td>
<td>JESD204B, Esistretnt w/ SERDES, avl Dec 2017</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>22</td>
<td>4</td>
<td>Alphacore</td>
<td>SBIR</td>
<td>$47k</td>
<td>module, ADC30 old price</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>20+</td>
<td>6</td>
<td>Micram</td>
<td>ADC3401/2</td>
<td>$3-5k</td>
<td>avl Q1 2019</td>
</tr>
<tr>
<td>56</td>
<td>64</td>
<td>13</td>
<td>68</td>
<td>Guzik</td>
<td>WDM5121</td>
<td>—</td>
<td>snapshot, 4 Gpt memory</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>25</td>
<td>10</td>
<td>Jarret</td>
<td>Williamson ADC</td>
<td>$??</td>
<td>ASIC IP macro only, NDA</td>
</tr>
<tr>
<td>56</td>
<td>320</td>
<td>15</td>
<td>8</td>
<td>Fujitsu</td>
<td>Robin/Blackbird</td>
<td>$20k</td>
<td>CHAIS, Vadatech</td>
</tr>
</tbody>
</table>

The four core 5 GSa/s e2v EV8AQ160 has been studied in depth [1]. The device provides register controls to align the cores to reduce the impact of spurs which arise due to misalignment in offset, gain, phase, or clock jitter. All the cores are clocked by the same external clock input. The quad 1.25 GSa/s interleaved mode has an equivalent sampling frequency of 5 GSa/s. A collaboration for Astronomy Signal Processing and Electronics Research (CASPER) [2] compatible printed circuit board with a 2.2 GHz bandwidth, YBG capable analog signal processing array designed and deployed at the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) in 2017. The SMA is an eight-element radio interferometer array. A single element of the SMA supports the bandwidth of its entire receiver system. The SMA has a 2.2 GHz bandwidth and can be arranged into configurations with baselines as long as 500 m resulting in a single quad band configuration. Dual polarized receivers can be operated in two bands simultaneously. Dual polarized receiver allows for a total bandwidth of 8 GHz, with each band expanded to a total of 4.5 GHz. The SMA has been deployed in two years, the most fundamental and demanding requirement for SWARM is that the SMA has an instantaneous bandwidth of 8 GHz.
board is available based on this ADC, designed by Jiang et al. [3]. Reference [1] details how the OGP and INL corrections are derived, and Fig 2 shows the autocorrelation spectra obtained with one of the ADCs, and the improvement obtained using core alignment.

Figure 2. Autocorrelation spectrum obtained from one of the ADCs, over a 30 second integration. The top panel shows the spectrum with the offset and gain parameters set to zeroes, for the four cores of the ADC. It shows a strong spur near the center, and a weaker spur in the first channel. The bottom panels shows that setting the offset and gain values removes the spurs effectively.

Figure 3. Block diagram showing at the top level a quadrant of SWARM, on the right of the dotted line, in the context of legacy SMA systems on the left. There are eight ROACH2s on the left of the 10 GbE crossbar switch, which contain F- and X-engines, as well as coarse and fine delay tracking, phase control and deWalshing, a phased array summer, visibility accumulator, network logic, and assorted transposes and other memory. On the right hand side of the switch is shown the “SDBE” and Mark6 data recorder, both required for EHT VLBI.

The SWARM sample rate of 4.576 GHz results in an approximately 2.3 GHz Nyquist bandwidth, with the upper edge of the usable 2 GHz band at 2.15 GHz. While the bandwidth of the e2v ADC in the data sheet is 2.0 GHz, our frequency response measurements show that the device responds beyond that limit, with the attenuation at 2.15 GHz about 6 dB (including any loss on the PC board). A sample rate of 4.6 GSpS is within the maximum specified rate.

CASPER pioneered the use of a commercial Ethernet switch as DSP interconnection fabric [6]. Data is packetized prior to transmission via Ethernet switch “crossbar” from F-engine to X-engine and to VLBI recorders.

For each SWARM quadrant ROACH2 units, see Figure 1, shared under open source by CASPER are equipped with a pair of ultra-fast Analog-to-Digital Converters (ADCs), a Field Programmable Gate Array (FPGA) processor, and eight 10 Gigabit Ethernet ports. A VLBI data recorder interface designated the SWARM Digital Back End, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. See Figure 3 which shows the architecture of a single SWARM quadrant at the top level, with the right hand side of the drawing showing the basic CASPER concept of processing engines organized around a 10 Gigabit Ethernet (GbE) switch.

The developments at the Submillimeter Array (SMA) demonstrate the feasibility of ultra-wide band digital processing with fine uniform spectral resolution and VLBI capability. Figure 4 is a 32 GHz wide instantaneous contigu-
ous spectrum with 140 kHz uniform spectral resolution, an impressive demonstration of what is possible. A ROACH2 configured identically with dual 5 Gsps ADC boards is used as the primary digital back end at single dish EHT stations. The ROACH2 runs with a different FPGA bitcode or “personality”, and in this mode is called the R2DBE [8].

4 Future Wideband Systems

An upgrade of the SMA designated wSMA envisions a quadrupling of the present 32 GHz SMA bandwidth to 128 GHz. This is achieved by a further doubling of bandwidth in each sideband to 16 GHz, two polarizations, and the new feature allowing two simultaneous receiver bands active (230 and 345 GHz). wSMA hinges on significant advances being made in wideband receiver design, and the availability of a dichroic plate to split the receiver bands. A back end to support the wSMA bandwidth without an increase in the number of analog IF channels—presently 32 across the eight antennas and two polarizations—is currently under development. The plan is to expand the sampled contiguous usable bandwidth to 8 GHz per block. This is on the margin of the devices listed in Table 1.

A single core 26 gigasample per second (GSa/s) 3-bit ADC is commercially available from Analog Devices Inc (ADI). Using this device 3-bit 20 GSa/s conversion with data captured by the Xilinx Virtex 7 XC7VX690T Field Programmable Gate Array (FPGA) has been demonstrated [4]. That this device is only 3-bits plus overflow is a fly in the ointment, and sparkle code artifacts were noticed in the output data. We are studying the ADC devices listed from Pacific Microchip, Alphacore, and Adsantec, with the Adsantec ASNT7112 being the most mature. In recent private communication with Vladimir Katzman of Adsantec an upgraded version of the ASNT7112 designated the ASNT7113 was discussed. This unit has a sample rate of 16 gigasamples-per-second, which is close to supporting an 8 GHz usable processed bandwidth but not quite there yet. Our current research is aimed at interfacing this device to the Ultrascale+ family of Xilinx FPGAs, specifically the VU9P chip, which is conveniently packaged on the economical VCU118 evaluation board.

A Cycle 3 ALMA Development Study entitled Digital Correlator and Phased Array Architectures for Upgrading ALMA was completed in 2017. SAO led a consortium staffed with an international group of domain experts. The team developed science-driven architectures that greatly enhance bandwidth, continuum sensitivity, fine spectral resolution and native phased array VLBI recording. Increased reliability, as well as reduced size, power consumption and life-cycle costs, are important benefits. A detailed and practical system design is documented and justified in a comprehensive ALMA technical memo2.

Driven by the needs of telecommunications and other industries, FPGAs optimized for digital signal processing, with as many as ~12,000 wide multipliers in a single chip, and ~30 Gbps asynchronous I/O on a single serial transceiver have become a powerful and flexible technology for astronomical DSP. The use of industry-driven wideband switch as the interconnect backbone has also been validated, and faster data rates are on the roadmap. While a number of interesting ADC devices to support the next tier of wideband instruments have been identified it is appropriate to recognize that presently the pace of development of this key technology somewhat lags the others.

5 Acknowledgements

The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics. Development of the VLBI features of SWARM were funded by the Gordon and Betty Moore Foundation and NSF. We received generous donations of FPGA chips from the Xilinx University Program. Our research benefits from technology shared under open source license by CASPER3. This research has made use of NASA’s Astrophysics Data System. We respectfully acknowledge the significance that Maunakea has for the indigenous Hawaiian people.

References

3casper.berkeley.edu