Reconfigurable Metasurfaces for Radar and Communications Systems

Kumar Vijay Mishra* (1), John A. Hodge (2), and Amir I. Zaghloul (1, 2)
(1) United States Army Research Laboratory, Adelphi, MD 20783 USA
(2) Virginia Tech, Falls Church, VA 22043 USA

Abstract

Recent research on holographic and diffractive metasurfaces shows enormous promise for developing cheaper and more compact systems. A metasurface aperture exploits the phase shift inherent in the guided reference wave and avoids using active elements such as phase-shifters associated with conventional phased arrays and electronically scanned antennas. The radiation pattern can thus be controlled by altering properties of each metasurface element coupled to the reference wave. In this paper, we discuss parameters to control the metasurface for a radar or communications payload. In both cases, the reconstruction of the received aperture field relies on using computational imaging techniques on arbitrary and spatially diverse field patterns.

1 Introduction

Metamaterials are artificial composite materials specifically engineered to exhibit properties not typically found in nature, for instance, the ability to manipulate electromagnetic radiation in new ways [1]. Metasurfaces provide unique capability to control electromagnetic (EM) waves using a low-profile low-cost hardware by controlling phase across the surface using periodic arrays of sub-wavelength elements. Traditionally, metasurfaces have been passive and fabricated for a specific functionality over a narrow bandwidth, such as beam reflection, polarization conversion, scattering reduction, or beam focusing. However, recent advances in metamaterial research have shown that these radio-frequency (RF) metasurfaces can be made reconfigurable by embedding tunable voltage-controlled elements, such as diodes, in each of the sub-wavelength unit cells.

A major distinction between metasurface antennas and traditional phased arrays is the sub-wavelength spacing and thickness of the scattering particles in the metasurface. Given the operating wavelength λ, the traditional phased arrays comprise of conventional radiating elements, such as dipoles, patches, or notches, spaced $\sim \lambda/2$ at the highest frequency of operation and a phase shifter at each radiating element. Beamforming is performed by varying the phase at each element to steer the beam in a desired direction through constructive interference. Typically, RF power amplifiers are combined with phase shifters to compensate for loss in active phase shifting, which results in greater power consumption and significant cost.

In contrast, metasurface antennas are electrically thin composite structures able to transform arbitrary incident waves into desired transmitted/reflected waves through the use of sub-wavelength scatterers (meta-atoms) to control the transmitted/reflected amplitude and phase distribution across the antenna aperture. Using the surface equivalence principle (SEP) and effective boundary conditions, meta-atoms are carefully designed to transform the incident wave (source) into a transmitted/reflected wave with a desired amplitude and phase response. Typically, each meta-atom is characterized by its electric and magnetic surface impedance, susceptibility, or polarizability. A common technique to synthesize the effective surface susceptibilities of a metasurface is to use the generalized sheet transition conditions (GSTCs) [2, 3]. Through similar principles, Huygens’ metasurfaces (HMS) are realized with two-dimensional arrays of polarizable particles that provide both electric and magnetic polarization currents to generate prescribed wave fronts [4, 5]. The following relations between the effective electric and magnetic surface currents (\vec{J}_e and \vec{M}_e), respectively, of a meta-atom with the electric sheet admittance (\vec{Y}_{es}) and magnetic sheet impedance (Z_{ms}) can be used to transform fields across the metasurface interface [4],

$$\vec{J}_e = \hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{Y}_{es} \cdot \vec{E}_{av}|S$$

(1)

$$\vec{M}_e = -\hat{n} \times (\vec{E}_2 - \vec{E}_1) = Z_{ms} \cdot \vec{H}_{av}|S.$$

(2)

where $\vec{E}_{av}|S$ and $\vec{H}_{av}|S$ are the average tangential electric and magnetic fields to the meta-atom surface. Additionally, transmission (T) and reflection (R) of a periodic metasurface can be related to isotropic sheet impedances for a normally incident plane wave using,

$$Y_{es} = \frac{2(1 - T - R)}{\eta(1 + T + R)}$$

(3)

$$Z_{ms} = \frac{2\eta(1 - T - R)}{(1 + T + R)},$$

(4)

where $\eta = \sqrt{n/\epsilon}$ is the free-space impedance [4]. The far-field radiation pattern of the reconfigurable metasurface under point source excitation can be calculated using [6],

$$f(\theta, \phi) = \sum_{m=1}^{M} \sum_{n=1}^{N} e^{i(m+\frac{1}{2})\cos \theta + (n+\frac{1}{2})\sin \phi},$$

(5)

where $\phi'(m,n) = \phi(m,n) - kr_{mn}$. M and N denote the number of unit cells along the x and y dimensions of the planar metasurface, respectively. The index of each
individual unit cell is denoted by m and n and $\phi(m,n)$ is the reflection phase of each unit cell, D is the unit cell grid spacing, the wavenumber is $k = \frac{2\pi}{\lambda}$, and $r_{m,n}'$ is the distance between the feed and each unit cell. While [6] assumes $\phi(m,n)$ to be binary, either 0° or 180°, this work extends the definition of unit cell reflection phase to $\phi(m,n,t) = \phi_{\text{beamforming}}(m,n) + \phi_{\text{modulation}}(m,n,t)$ to incorporate both reconfigurable beamforming and time-varying signal modulation functionalities directly in the metasurface. $\phi_{\text{beamforming}}(m,n)$ is typically performed by applying a periodic progressive phase shift along the electric field direction [7, 8] or using other holographic beamforming techniques [9, 10].

In our previous work [11], we demonstrated innovative techniques to transform a conventional dipole antenna into a directive high-gain mechanically scanned antenna for radar, communication, and direction finding applications by parasitically loading the dipole antenna with arrays of electrically close metamaterial elements. Later, in [12], we incorporated electronic switching and tuning using embedded active circuit elements for dynamic frequency tuning and electronic beam scanning. We then extended this reconfigurable metamaterial antenna concept to metasurfaces in [13] by simulating passive and active variants of a holographic metasurface antenna as a proof of concept of an addressable and reconfigurable metasurface.

In this paper, we provide an overview of controllable metasurface parameters for both radar and communications payloads. In nearly every antenna application, the far-field radiation pattern has a Fourier transform relationship with the aperture field distribution and it suffices to have the ability to create arbitrary field distributions within the aperture. Reconfigurable metasurface antennas are generalized programmable RF devices that provide multifunction control of electromagnetic waves through amplitude and/or phase control of transmitted and reflected fields. In the next section, we discuss some specific radar applications of reconfigurable metasurfaces.

2 Metasurfaces for Radar Systems

A radar system sends out radio waves and uses the reflected echoes to create an image of a distant target. Metasurfaces are attractive for array-based radars and can enable mass production of compact radar systems. For example, in platforms such as small unmanned aircraft systems (UASs), the relatively high cost and SWaP (size, weight, and power) of phased array antennas is prohibitive. Traditional phased arrays typically require many costly active RF components, which also create significant power, cooling, weight requirements. Low-cost low-SWaP defense systems, including the next generation of swarm UASs, could benefit from metasurfaces - a low-cost alternative to a traditional phased array. The applications of metasurfaces in radar include both far (e.g. automotive collision avoidance, drone surveillance) and near-field (e.g. through-wall imaging) systems.

In addition to transmitting and receiving radar signals as an antenna, a reconfigurable metasurface can also be used to provide dynamic scattering reduction [17] by applying pseudo-random phase codings spatially across the metasurface to scatter an incoming wave in many directions. This dynamic scattering functionality can be used to reduce the radar cross-section (RCS) of the metasurface antenna. Additionally, a time-varying metasurface with a-priori knowledge of an incoming radar signal could be pulsed to frequency-shift or spoof the reflected return signal (Fig. 1).

3 Metasurfaces for RF Communications

While a number of recent studies have investigated the use of dynamic metasurface antennas for radar systems, their applications for wireless RF communication systems remain relatively unexamined. Reconfigurable antennas, with the ability to radiate more than one pattern at different frequencies and polarizations, are necessary in modern telecommunication systems [22]. Time-varying reconfigurable metasurface antennas have the potential to
Figure 2. Complex RF switch matrix architecture for satellite communication, which could be simplified using a reconfigurable metasurface [19].

Figure 3. Digital control of metasurface multiplexing and modulation in a communications transmitter. Simplify the system architecture of modern communication systems (Fig. 2) and enhance their performance.

In [7], we proposed the concept of using an active reconfigurable metasurface for spatially multiplexing and modulating RF wireless communication signals due to its sub-wavelength thickness, planar nature, and reduced cost & complexity compared to traditional phased arrays. Most studies on reconfigurable metasurface antennas focus on beam scanning or beam shaping [1, 17, 8, 6]. However, they assume that the signal would modulate the carrier signal using RF circuitry before the antenna feed.

In our proposed concept (Fig. 3), the communications signal is modulated onto the carrier wave directly by the metasurface using electronic phase tuning of individual metasurface unit-elements (meta-atoms) to perform phase shift keying (PSK) [7]. In addition to PSK, a reconfigurable metasurface antenna can also perform frequency-shift keying (FSK), spatial code modulation (SCM), and spatial shift keying (SSK) signal modulation techniques (see e.g. Fig. 2). If designed to provide dynamic polarization control, a reconfigurable metasurface could also modulate a communication signal using polarization-shift keying [23] or provide transmit diversity over multiple polarizations to boost link reliability. Communication data rates can be enhanced by simultaneously incorporating and combining multiple spatial and time-varying modulation techniques. Additionally, a reconfigurable metasurface can perform spatial multiplexing by generating multiple beams or dividing the aperture into multiple phase centers (sub-apertures) to simultaneously transmit multiple signals.

Further, multiple data signals are fed into a multiplexing signal matrix which is used to control the phase distribution...
across the metasurface using addressable embedded elements, such as varactor or PIN diodes, within each metasurface unit-cell (referred to as a meta-atom). This multiplexing metasurface device provides the opportunity for both spatial and time modulation. The modulation of the metasurface can be engineered to support carrier waves at multiple frequencies. Additionally, the reconfigurable metasurface antenna can function as a modulator, multiplexer, and a beamformer.

Grayscale tuning provides finer control of the magnitude and phase of each unit cell element at the cost of added complexity relative to binary tuning elements. Some multifunctional metasurfaces have used both varactor and PIN diodes in the unit cell for both binary and grayscale tuning [8]. Based on the application, the unit cell of the metasurface can have different types of switches and embedded tuning mechanisms with different switching speeds to control multiple functions and reduce power consumption. For example, beam scanning may be performed using varactor diodes and communication signal modulation, with faster switching requirements, could be performed using PIN diodes.

4 Acknowledgements

K.V.M. acknowledges support from the National Academies of Sciences, Engineering, and Medicine via Army Research Laboratory Harry Diamond Distinguished Postdoctoral Fellowship.

References

