A Nonlinear Fluid Model for Weak Double Layers and Electrostatic Waves in the Solar Wind

G. S. Lakhina(1), and S. V. Singh(1)

(1) Indian Institute of Geomagnetism, Navi Mumbai, India, e-mail: gslakhina@gmail.com; satyavir@iigs.iigm.res.in

Weak double layers (WDLs) and coherent electrostatic waves in the range of frequencies above the proton plasma frequency, f_{pi}, and smaller than or of the order of the electron plasma frequency, f_{pe}, have been observed in the solar wind at 1 AU. A soliton model, which treats the solar wind plasma as a fluid of hot protons and hot α particles streaming with respect to protons, and suprathermal electrons having a κ-distribution, is found to sustain slow and fast ion-acoustic solitons and double layers. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. The slow ion-acoustic mode can exist even when the relative streaming, U_0, between alphas and protons is zero, provided alpha temperature, T_α, is not exactly equal to 4 times the proton temperature, T_p. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The fast ion-acoustic mode can support only positive potential solitons. The predicted amplitudes and widths of slow ion-acoustic double layers are found to be in an excellent agreement with the observed amplitudes and widths of WDLs. The fast Fourier transform (FFT) of the ion-acoustic solitons/DLs would produce a broadband spectrum with a main peak between 0.35 kHz to 1.6 kHz, and $E = (0.01 – 0.7) \text{ mV m}^{-1}$ which are in excellent agreement with the observed electric fields $\sim (0.0054 – 0.54) \text{ mV m}^{-1}$ associated with the low-frequency waves observed in the solar wind at 1 AU. It is proposed that WDLs and low-frequency coherent electrostatic waves, observed by Wind spacecraft in the solar wind at 1 AU [1], might be generated by the slow and fast ion-acoustic solitons and double layers.