Variability in the mesospheric sodium D2/D1 dayglow intensity ratio: First results

Md. Mosarraf Hossain(1), C. Vineeth(1), and Tarun Kumar Pant(1)
(1) Space Physics Laboratory, VSSC, Trivandrum; e-mail: mosarraf_hossain@vssc.gov.in; mosarraf_sw@yahoo.co.in

Airglow emissions that are faint radiations originating from the planetary upper atmospheres are crucial tracers of the state of the atmospheres therein. Sodium airglows are generated by the neutral atomic Na layers in the terrestrial upper mesosphere/lower thermosphere (MLT) region. The Na airglow emissions and their intensity ratio \(R_D = I_{D_1}/I_{D_2} \) data are poised to play important role in the investigation of energetics, dynamics and chemistry of the mentioned atmospheric region.

There were several earlier works involving this intensity ratio \(R_D \); and the accepted view was that this ratio was 2.0, as expected on the statistical grounds. In the recent past, Slanger et. al. [1] has shown that \(R_D \) is quite variable, lying between 1.2 to 2.0. However, all these studies have been in the night-time. It can be noted that the ground based Na airglow measurements during the daytime are difficult and requires specialized techniques. The inherent difficulties have been overcome and regular systematic measurements of terrestrial Na daytime airglow have been made possible for the first time using a high resolution scanning grating spectrometer [2]. The present study involves measurements of both the daytime Na 589.6 (D1) nm and 589.0 (D2) line emissions using an advanced version of the spectrometer (resolution-~ 0.03 Å) compared to that of Hossain et al. [2].

![Figure 1(a). Variability of daytime Na D1 and D2 airglow emission intensities on march 9, 2018.](image1)

![Figure 1(b). Variability of \(R_D \) with MSIS model derived temperature and [O]/[O2] ratio.](image2)

![Figure 1(c). Scatter plot of \(R_D \) versus [O]/[O2] ratio.](image3)

Figure 1(a) shows the variability of the daytime Na D1 and D2 airglow emission intensities on march 9, 2018. As obvious, the measured emission intensities exhibit significant temporal variability within that day. Over 3 months of data considered in this work shows that the D1 and D2 emission intensities vary significantly from one day to another. As seen from the present data set, \(R_D \) ratio varies between 0.65 – 1.7, unlike 1.2 to 2.0 in night-time as reported in [1]. It seems that in addition to the modified Chapman chemical scheme, resonant scattering also plays important role in controlling the \(R_D \) ratio. Figure 1(b) shows the variability of \(R_D \) with the MSIS model derived temperature and [O]/[O2] ratio in the MLT region on march 20, 2018. As is seen from the current data set, \(R_D \) correlates better with [O]/[O2] than temperature. Figure 1(c) also corroborates this observation. Since \(R_D \) during daytime correlates better with [O]/[O2] than temperature; and \(R_D \) range is different from that in nighttime, it seems that the daytime variation in \(R_D \) arises from a combined effect of both the chemistry and the resonance florescence.
