Cross-Shaped Rounded Corner Terahertz Bandpass Filter on Silicon

Kshitij Mittholiya(1), Lakshmi Nair(1), Rutuja Tare(1), Ravi Kumar Jain(2), S. S. Prabhu(2), Anuj Bhatnagar(1)
(1) Society for Applied Microwave Electronics Engineering and Research, IIT Campus, Powai, Mumbai 400076, India
(2) Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005, India
anuj@sameer.gov.in

Abstract

Cross-shaped rounded corner terahertz bandpass filter is fabricated on aluminum coated silicon wafer. Finite difference time domain (FDTD) method is used to design this filter with rounded corners and a continuous wave frequency domain terahertz system is used for transmission spectrum measurement of fabricated filter in 0.05-0.6THz frequency range. The measured first central frequency of fabricated band pass filter is 191 GHz with 115 GHz 3dB bandwidth compared to designed central frequency of 196 GHz with 53 GHz bandwidth.

1. Introduction

Terahertz (THz) radiation, also known as the submillimeter radiation consists of electromagnetic waves of frequencies from 100 GHz to 10,000 GHz. It occupies the gap region between microwaves and infrared light of electromagnetic spectrum. THz radiation can pass through clothes, shoes, plastics, bags, paper envelops, allowing detection of hidden biological and chemical agents, which can be imaged or have unique spectral characteristics at THz frequency [1]. It has potential applications in spectroscopy, imaging and wireless communication systems [2]. Functional devices such as filters, compensators, polarizers, modulators and waveguides are required for system applications of THz technology. Studies on frequency selective surface based narrow band and wideband THz bandpass filters have been reported [3-6]. Direct structuring of cross shaped filters in thin metal films using laser has been described [7-8]. The three-layer all-silicon interference optical filter and fold-cross metal mesh filter further advances these developments [9-10]. We report the design and fabrication of Cross-shaped rounded corner THz bandpass filter on silicon, and compare the experimental observations with our simulation results.

2. Design and Fabrication

The cross-shaped rounded corner bandpass filter on silicon is designed using numerical FDTD simulation, as shown in fig.1. The resonant frequency dependence on dimensions of cross-shaped filter has been reported earlier [11]. A 350 µm x 350 µm single cell consisting of 306 µm long and 98 µm wide two cross arms with 49 µm radius curvature at corners is designed. A photomask consisting of repeated cross pattern cells along x and y direction is made. The thermal evaporation system is used to deposit 0.26 µm aluminium film on 260 µm thick 2 inch diameter silicon wafer. The wafer is then coated with positive photo resist and UV lithography is carried out to transfer the pattern from photomask to substrate. The patterned aluminium is etched in solution of DI water and H₃PO₄ (9:1) followed by removal of etchants in DI water. The fabricated bandpass filter is shown in fig.2.

![Figure 1: Layout of designed bandpass filter](image1)

![Figure 2: Cross-shaped rounded corner terahertz bandpass filter fabricated on silicon](image2)
The second transmission peak for filter with rounded and sharp corners are observed at 312 and 309 GHz respectively. The 3dB bandwidth for rounded corner filter is 22 GHz, 1 GHz higher than the bandwidth for sharp corner filter.

3. Test and Measurement

The continuous wave frequency domain terahertz system from Toptica is used to test the fabricated filter in transmission configuration, as shown in fig.4. The frequency scan in 50 to 600 GHz range with 4 MHz step size is performed.

The corresponding simulated spectrum is generated using numerical FDTD simulation for silicon based cross-shaped rounded edge filter as shown in fig.5. The peak transmission at 191 GHz (f_1) spans from 127 GHz (f_a) to 242 GHz (f_b). This is 5 GHz less than the designed 196 GHz central frequency.

5. Conclusion

Cross-shaped rounded corner THz bandpass filter on silicon has been designed and fabricated. The measured THz spectrum of fabricated filter closely matched our simulation results. The fabricated filter has transmission peak at 191 GHz. It is observed that rounded corners increase the central frequency from 190 GHz for sharp corner pattern to 196 GHz in our simulation. The corresponding increase in bandwidth from 52 GHz to 53 GHz is also observed.

6. Acknowledgements

Authors acknowledge the institutional support provided by Dr. S. Ranade, Director General of SAMEER and the encouragement from Professor D. Mathur to initiate research in terahertz.

7. References

