SNO-Based Design of Wide-Angle Beam-Scanning Reflectarrays

M. Beccaria, A. Niccolai, A. Massaccesi, R. E. Zich, and P. Pirinoli

Abstract — In this article, the design of a passive reflectarray with beam-scanning capabilities over a wide scan range is addressed. The proposed approach is based on the use of an efficient evolutionary algorithm, Social Network Optimization, and on the definition of a proper optimization environment that allows the simultaneous optimization of the antenna radiation pattern for different pointing directions, keeping under control the computational cost of the procedure. The effectiveness of the method is validated through the experimental characterization of a prototype, whose performance is also compared with that of a conventional bifocal configuration.

1. Introduction

Nowadays, many applications require the use of a beam-scanning antenna; among the possible solutions for their realization, reflectarrays (RAs) have been considered in view of their interesting features when adopted to design fixed-beam antennas [1, 2].

The most straightforward way to obtain a beam-scanning RA is to introduce active elements, such as varactors, PIN diodes, or MEMS [3–6]: the resulting antenna performance is good, but its complexity significantly increases. An alternative is to use a passive reflectarray and steer the beam direction by either moving the feed along a circular arc to keep constant the distance with the RA surface or using a feed array [7–11]: the absence of active elements reduces the RA design’s complexity, but at the cost of a degradation of the antenna radiation patterns, characterized by enlargement of the main beam, an increase in the side-lobe level (SLL), and a decrease in the maximum gain.

To overcome this problem, different techniques have been proposed, as that of designing a “bifocal” reflectarray [11], whose performance can eventually be enhanced using a double reflector configuration [12], or the use of the Phase Matching Method (PMM) [8]. An alternative solution consists in exploiting global evolutionary algorithms (EAs), even if their application to the optimization of an RA is still challenging for a number of reasons: the number of variables involved in the process is generally great, since they correspond to the degrees of freedom of the RA unit cells multiplied by the number of cells; the mathematical function that models the problem is computationally expensive or not accurate enough, and therefore there is a risk that the stochastic nature of the method provides a solution that behaves in a completely different way from the one predicted by the optimizer. Despite these drawbacks, some results on the use of the most popular EAs—such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and differential evolution (DE)—for the optimization of shaped-beam, not uniformly spaced or multi-beam reflectarrays have been presented [13–17].

In this article, a more recent algorithm—Social Network Optimization (SNO)—which showed very good performance when used for the design of flat- [18] or shaped-beam [19] reflectarrays is applied to the design of a wide-angle, beam-scanning RA, covering a scan range from -40° to $+40^\circ$. Particular care is devoted to the definition of the optimization environment, designed to guarantee accurate and reliable results and to minimize the process’s numerical cost. Some very preliminary results were already presented [20, 21], where the performance of SNO and especially its convergence capability, was compared with that of another family of efficient EAs, the $M_m C_n$-BBO [22], an enhanced version of biogeography-based optimization (BBO) [23]. Here, the effectiveness of SNO is assessed by experimental characterization of a prototype, designed using the optimization algorithm, and comparison of its performance with that of an equivalent bifocal RA.

The main features of SNO are summarized in the next section. In Section 3 the considered problem and the related optimization environment are described. Finally, in Section 4 the performance of the optimized reflectarray is discussed and compared with that of the bifocal solution.

2. Social Network Optimization

SNO is a population-based algorithm that mimics the information-sharing process of online social networks. The population of the algorithm consists of the users of the considered social network that share their ideas and interact online. Each user is characterized by its opinion, which is shared by means of a post (in the metaphor, the candidate solution of the optimization problem). The post is evaluated by the social network and receives a visibility value (the cost value of the problem) that indicates how probable it is that another user can read it and be influenced by it.

The online interaction takes place through two different networks: the friend network, characterized by
strong connections among users and a slow evolution rate, and the trust network, characterized by weaker interactions and an evolution based on posts’ visibility value. Each user exchanges opinions with other individuals, being influenced by both networks. The interaction is based on the following equation:

\[o(t + 1) = o(t) + \alpha [o(t) - o(t - 1)] + \beta [a(t) - o(t)] \]

(1)

where \(o \) is the user opinion and \(a \) is the attracting idea, obtained by means of a single-point crossover from the ideas deriving from the two networks.

SNO has been compared with GA and PSO, through application to several benchmark functions that are widely used for EA testing, since each of them has unique features useful in measuring algorithm performance in different scenarios. More details on these functions and their complete mathematical formulation can be found in [24]. Table 1 reports the average cost value obtained by application of the three algorithms to the listed benchmark functions after 5,000 objective function calls and considering 50 independent trials. In most cases (the bolded values are the best results for each function), SNO outperforms the other two algorithms, and this confirms its good features.

3. The Optimization Environment

The optimization problem addresses the design of an RA with \(N \times N \) unit cells, showing scanning capabilities over the range \([\theta_{\min}, \theta_{\max}]\) in the elevation plane. The problem is intrinsically multiobjective, but to keep the computational cost under control while still guaranteeing good convergence and reliability, a proper cost function was introduced that is the linear combination of different terms, each representing a specific objective:

\[C(d, S) = \sum_{i=1}^{S} \lambda_i \cdot (c_1(d, S_i) + c_2(d, S_i)) \]

(2)

In (2), \(d \) is the vector of variables used to control the optimization process, \(\lambda \) are scalar coefficients, and \(S \) is the set of directions of maximum radiation considered, during the optimization, within the scan coverage. The \(c_1 \) function is defined as the integral of the error \(\Delta S \) between the radiation pattern evaluated with the aperture field method [1] and the values of the optimization variables provided by SNO and a predefined 3D mask:

\[c_1(d, S_i) = \int \Delta S_i(\theta, \phi) d\theta d\phi \]

(3)

The function \(c_2 \) represents the scan-angle error \(\Delta \theta_s \)—i.e., the squared value of the difference between the desired direction of maximum radiation \(\theta \) and the actual one, \(\theta_{\max} \):

\[c_2(d, S_i) = (\theta_{\max} - \theta_{\max}) \frac{180}{\pi} \]

(4)

It was introduced to speedup the algorithm’s convergence and guarantee that the direction of maximum radiation is properly found.

The variables collected in the vector \(d \) are of two types: free geometrical parameters characterizing each unit cell and the Beam Deviation Factor (BDF), defined as the ratio between \(\theta_{\max} \) and the angle of incidence \(\theta_{inc} \) between the impinging field and the direction orthogonal to the RA surface. A BDF is associated to each considered direction of maximum radiation. Since they have different domains of definition, variables normalized in the range \([0; 1]\) are used.

To improve the effectiveness of SNO and guide it to find a feasible solution, the available information about the physics of the considered problem is implemented in the optimization environment. In particular, the masks corresponding to the different pointing directions are not equal, to take into account the fact that the beam steering affects the radiation patterns, with a widening of the main beam and an increase of the SLL. Moreover, symmetrical scan coverage can be obtained with a symmetrical distribution of the unit cells: this means that only half of the scanning range can be considered during the optimization, and also that the symmetries can be used to reduce the size of the problem and consequently the computational time for solving it.

4. Results

In the considered example, \(N = 24 \) and each unit cell has a size equal to \(\lambda/2 \), at \(f_0 = 30 \) GHz, for a total size of the square RA aperture of \(12\lambda \times 12\lambda \). The radiating elements are square patches, printed on a Diclad 527 substrate with a thickness of 0.8 mm and the phase of the unit cell reflection coefficient is controlled through the patch side \(W \) [19]. The aperture is illuminated by a smooth wall horn whose radiation pattern can be modeled as \(\cos(\theta)^q \), with \(q = 12.5 \) [25]. The focal distance from the phase center of the feed to the aperture is \(f/D = 1.2 \), to reduce the taper. A sketch of the resulting configuration is shown in Figure 1.

The RA’s total number of degrees of freedom is equal to \(N^2 = 576 \), but, considering the symmetries in the patches distribution, it reduces to \(N_{DF} = 144 \). Moreover, only the positive half-scan range is considered in the optimization: as a consequence, \(\theta_{\max} \) was
chosen equal to 40°, while $\theta_{\min} = 10^\circ$, to avoid radiation in the broadside direction that would be affected by the blockage introduced by the feed. In this interval, four directions of maximum radiation—i.e., $\theta_{\max} = 10^\circ$, 20°, 30°, 40°—were considered in the optimization process; therefore, the total number of optimization variables is $N_{DF} + 4BDF$. The starting position of the feed is specular to the direction of maximum radiation of the RA identified by θ_{\min}; the feed is then moved along a circular arc to cover the scanning range up to θ_{\max} (see Figure 1).

The termination criterion adopted for the optimization is 50,000 objective function calls. The average value of the curves of convergence and the corresponding standard deviation obtained considering 40 independent trials are plotted in Figure 2; they prove the good convergence capability of the process and also its reliability.

The radiation patterns obtained at the end of the process in the four considered directions of maximum radiation in the E- and H-planes are plotted in Figure 3, together with the adopted masks. In the same figure, the measured patterns relative to the prototype shown in the inset of Figure 1 are shown. Good agreement can be seen between the results obtained at the end of the optimization and the measured ones; above all, they satisfy the masks almost everywhere. This proves the effectiveness of the developed technique and the beam-scanning capability of the RA. Note that the radiation
To further validate the efficiency of the proposed method, the RA performance was compared with that of a bifocal configuration, with the same size, designed to compensate the average of the phase maps needed to have maximum radiation for \(\theta_{\text{max}} = \pm 40^\circ \). The measured radiation patterns in the two principal planes for the resulting configuration are plotted in Figure 4, together with those for the optimized RA. Also in this case, in the E-plane only the radiation patterns for positive scanning angles are shown. The quality of the optimization process is clear: the radiation patterns of the optimized configuration are characterized by narrower main beams and lower SLLs. Finally, in Figure 5, the variation of the gain with the scanning angle is reported, for both the optimized and the bifocal RAs. The continuous lines represent the evaluated gain, while the circles show the measured values. These results confirm that the optimized RA outperforms the bifocal one: the maximum gain that occurs for almost the same angle is 2 dB higher, at a cost of a slightly larger variation of the gain over the considered subrange, equal to \(\Delta G = 2 \) dB for the SNO solution and \(\Delta G = 1.7 \) dB for the bifocal one.

5. Conclusions

In this article, the design of a beam-scanning passive reflectarray antenna carried out with a promising evolutionary algorithm—Social Network Optimization—is presented, together with a description of the optimization environment developed to maximize the optimization efficiency and the accuracy and reliability of the obtained solution. Those features are proven through the experimental characterization of a prototype and the comparison of its performance with that of a bifocal RA.

6. Acknowledgment

The authors would like to thank Gianluca Dassano from the Politecnico di Torino for his valuable help in the experimental characterization of the antenna prototypes.

7. References

6. O. Bayraktar, O. A. Civi, and T. Akin, “Beam Switching Reflectarray Monolithically Integrated With RF MEMS...

