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Abstract – A novel quantitative electromagnetic
imaging method for subsurface prospecting is proposed
in this article, exploiting the potentialities of the
regularization theory in Lebesgue spaces with variable
exponents. The described technique has been prelimi-
narily validated by means of numerical simulations,
where scattered field data are collected in a cross-
borehole scenario.

1. Introduction

One of the most promising applications of
electromagnetic imaging techniques is related to
subsurface prospecting [1, 2]. At present, a significant
number of methods have been developed and tested in
various configurations. The majority of approaches rely
on the qualitative processing of ground penetrating
radar data acquired above the ground surface or in
cross-borehole configurations [3–6]. Nevertheless, a
correct interpretation of the data is usually a difficult
task even for well-trained users, and it is not enough in
several contexts, where a point-by-point determination
of the dielectric properties of buried targets is required.
However, the quantitative reconstruction of the under-
ground structures is impaired by the presence of a
stratified medium, which complicates the scattering
phenomena significantly [7, 8]. In addition, the amount
of data that can be collected in a traditional subsurface
imaging configuration is usually less than its free-space
counterpart, because of the difficulties in defining a set
of measurement probes all around the region under test.

To address these challenging problems, the
research community is continuously working toward
the development of novel full-wave inversion strategies
for buried object detection (e.g., the recently proposed
virtual experiment framework [9, 10]), as well as for the
improvement of existing ones in view of a practical
application. In this context, nonlinear approaches
exploiting Newton-type schemes seem to be promising.
In particular, techniques exploiting the regularization
theory in Lp Banach spaces have been found to be
capable of substantially increasing the reconstruction
accuracy in this applicative scenario [11, 12]. However,
the selection of an adequate Lebesgue space exponent p

remained a crucial issue until variable exponent
microwave-imaging methods have been introduced
[13]. In this article, the variable exponent approach is
extended for the first time to deal with subsurface
imaging configurations. Note that the main difference
with respect to [13] is the use, inside the scattering
model, of the proper two-dimensional (2D) Green’s
function for two-layer media. However, the presence of
the ground–air interface makes the inverse problem
significantly more difficult. Consequently, the present
article is aimed at evaluating the regularization
properties of the method in this more involved case.
In particular, its capabilities have been assessed in an
initial numerical framework, where a cross-borehole
measurement technique has been taken into account.

2. Overview of the Mathematical
Formulation

The electromagnetic problem is formulated in a
2D and scalar setting, whose geometry is exemplified in
Figure 1. The method is developed in the frequency
domain, with an e j2pft time dependence (f denotes the
considered frequency). The space is divided into two
regions: the upper one is air (characterized by the
dielectric permittivity of vacuum �0), whereas the lower
half-space is a terrain whose complex permittivity is �1.
A 2D underground domain in the xy plane constitutes
the investigation region Ri, whose dielectric properties
are assumed to be unknown and are retrieved by the
inversion process. Two vertical boreholes, positioned at
both sides of Ri, contain the antennas used to illuminate
the scenario and to collect the scattered electric field.
These boreholes constitute the measurement domain
Rm. The z component of the scattered electric field Ezs in
Rm is related to the dielectric properties of Ri by means
of the nonlinear equation [14]

Ezs rð Þ ¼ LRm
s I � LRi

s
� ��1

Ezi rð Þ; r 2 Rm ð1Þ

where Ezi is the incident electric field and s ¼ �� �1ð Þ=
�1 and LR (with R ¼ Ri;Rmf g) are linear integral
operators whose definition is given by

LRa rð Þ ¼ �k2
1

Z Z

Ri

a r0ð ÞgM r; r0ð Þdr0; r 2 R: ð2Þ

In (2), k1 is the wavenumber inside the lower half-
space, and gM is the 2D Green’s function for a planar
two-layer configuration [15]. (1) is written in a compact
form as Ezs ¼ N sð Þ, where s 2 X is the unknown of the
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problem and Ezs 2 Y represents the measured data,
being X ; Y , two Lebesgue functional spaces.

In our solving strategy, an iterative linearization
of (1) around the current estimate of the solution s is
performed. At the kth iteration (k ¼ 1; . . . ;K), the
linear equation to be solved is N 0

khk ¼ Ezs �N skð Þ,
where sk is the kth estimation of s, N 0

k is the Fréchet
derivative of N , and hk is the unknown of the linearized
problem. Once hk is found, it is summed to sk to update
the solution. The key point is represented by the
regularizing approach adopted for the resolution of such
a linear equation. In this article, we adopt a Landweber
method formulated in Lebesgue spaces Lp �ð Þ with
variable exponents, whose ith iteration (i ¼ 1; . . . ; I)
is defined as

hk;iþ1 ¼ JX � JX hk;i

� �
� aN 0�

k JY N 0

khk;i � Ek

� �� �
ð3Þ

where Ek ¼ Ezs �N skð Þ and N 0�
k is the adjoint of N 0

k

and a 2 Rþ. The functions JX , JX � , and JY , called
duality maps, are computed as in [13], by considering X
as a variable exponent Lebesgue space and the space Y
as a standard fixed exponent one. More precisely, X is
an Lp rð Þ space, with r 2 Ri, whereas Y is an Lpa space,
with pa being the average value of p rð Þ for r 2 Ri. In
other words, the exponent p rð Þ in the space of the
unknown is a function of the position vector inside the
investigation domain, and its value at the kth iteration
(pk rð Þ, r 2 Ri) depends on the magnitude of the
reconstructed function at the previous linearization step
sk�1 as follows

pk rð Þ ¼ pm þ Dp sk�1 rð Þj j=max
r2Ri

sk�1 rð Þj j ð4Þ

This means that for each point of Ri, the values of
pk lie in the interval pm; pm þ Dp½ � and are linearly
connected to the normalized magnitude of sk�1, which
contains information about the locations of the buried
targets. In the first linearization step, where sk�1 is not
available, p1 is initialized to a constant value.
Alternatively, it may be defined on the basis of a priori
information.

3. Numerical Results

The developed inversion strategy has been
initially tested in a numerically simulated scenario. In
particular, a homogeneous dry ground has been
assumed and modeled by a material with complex
dielectric permittivity �1 ¼ 4� j0:6ð Þ�0. Two boreholes

at xb ¼ 60:6k0 have been considered, where k0 is the
wavelength in vacuum. A total of S ¼ 22 antennas (11
for each borehole) have been simulated in a multistatic–
multiview arrangement. Each antenna acts, in turn, as a
transmitter (a line source model is used), and the
remaining ones (assumed as ideal field probes) collect
the field. The investigation region Ri is a square domain
with the side length Li ¼ k0 centered in 0;�0:5k0ð Þ.
The working frequency has been set equal to
f ¼ 300 MHz.

The electromagnetic field is computed by using a
custom forward solver on the basis of the method of
moments (with pulse basis functions and Dirac delta
weighting functions), in which the investigated scenario
has been discretized into Nfw ¼ 40 3 40 square sub-
domains of side length l ¼ 2:5 cm. Moreover, to obtain
more realistic data, the computed values have been
corrupted with a zero-mean Gaussian noise character-
ized by a signal-to-noise ratio of 30 dB.

In the inversion procedure, the investigation
domain has been discretized into Nin ¼ 30 3 30 square
subdomains of side l ¼ 3:3 cm to avoid inverse crimes.
The parameters of the variable exponent inversion
method are the following: p1 ¼ 1:4, pm ¼ 1:2, and
Dp ¼ 0:8. Moreover, both iterative loops are terminated
when the relative variation of the data residual is less
than a threshold Drth ¼ 1% or when the numbers of
iterations exceed the predefined values of K ¼ 20 (for
the outer loop) and I ¼ 10 (for the inner loop). Such
values have been selected on the basis of the previous
analyses performed in the free-space scenario. Indeed, it
has been found that values of the norm exponent close
to one produce better reconstructions of sparse regions
(e.g., the background); thus, the lower bound of the
exponent function p �ð Þ has been set equal to pm ¼ 1:2.
As a result, according to (4), low values of the exponent
function are assigned to the background region.
Conversely, values close to two allow a good recon-
struction of smooth regions (e.g., the internal structure
of the targets embedded in the subsoil). Therefore, the
maximum value of p �ð Þ has been set equal to
pm þ Dp ¼ 2. In the initial iteration, the exponent
function has been empirically fixed to a constant value
close to the lower bound (i.e., p1 ¼ 1:4).

In the first case, a single buried target is assumed,
which is a void cylinder (� ¼ �0) with center rc ¼
0:1;�0:6ð Þk0 and diameter dc ¼ 0:3k0. Figure 2 reports

the resulting reconstructed distribution of the real and
imaginary parts of the relative dielectric permittivity
inside Ri obtained with the proposed approach. For
comparison, the same scattered field data have been
used to retrieve the permittivity distribution with an
inexact Newton technique in Lp spaces with a fixed
exponent [12], in which the predefined p parameter has
been swept between 1.1 and 2 (the latter corresponding
to a Hilbert space approach). The result of this analysis
has been reported in Figure 3, where the average
relative error on the reconstructed permittivity is shown
for each fixed value of p versus the proposed
methodology. According to this performance metric,

Figure 1. Configuration of the subsurface imaging problem.
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the best fixed exponent results have been achieved for
p ¼ 1:2, where the error bottoms out at the value 0.145.
The proposed approach produces a significant improve-
ment in the reconstruction, with a relative error equal to
0.108. Incidentally, this is also a small value compared
with the Hilbert space case (p ¼ 2), where the error is
0.216. Figures 4 and 5 report the two dielectric
reconstructions obtained for a fixed exponent space
with p ¼ 1:2 and in the Hilbert case, respectively.

The performance of the method has been also
examined with respect to the size of the considered
cylinder, for dc 2 0:1; 0:4½ �k0. Table 1 shows that the
reconstruction error grows together with an increase of
dc, which gives rise to more artifacts in the region Ri.

Figure 3. Relative reconstruction error obtained with the proposed
variable exponent method versus the fixed exponent one with different
values of p.

Figure 4. Reconstructed distribution of the (a) real and (b) imaginary
parts of the relative dielectric permittivity in the first case (single void
cylinder). Best result obtained with a fixed exponent method
(p ¼ 1:2).

Figure 2. Reconstructed distribution of the (a) real and (b) imaginary
parts of the relative dielectric permittivity in the first case (single void
cylinder). Variable exponent approach.

Figure 5. Reconstructed distribution of the (a) real and (b) imaginary
parts of the relative dielectric permittivity in the first case (single void
cylinder). Hilbert space result (p ¼ 2).
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The number of performed outer iterations in each case,
as well as the corresponding computational times are
also reported in the table. An increase in both
reconstruction time and the number of iterations is
observed in the presence of larger buried objects.

As a further test scenario, a more complex
configuration, including two different targets has been
considered. The first target is a void circular cylinder
(� ¼ �0) centered at rc ¼ 0:1;�0:6ð Þk0 and with
diameter dc ¼ 0:2k0. The second object is a dielectric
slab characterized by �r ¼ 8, centered at rs ¼
�0:1;�0:25ð Þk0 and with sides 0:1k0 and 0:4k0. The

real and imaginary parts of the relative dielectric
permittivity reconstructed by means of the proposed
strategy are shown in Figure 6. Figure 7 reports a
comparison between the errors obtained with the
variable exponent approach and the fixed exponent
one, with p 2 1:1; 2½ �. As in the previous case, the

results achieved by the novel method compare very well
with the best ones given by the fixed exponent
technique. However, note that the proposed approach
avoids performing an external selection of the p
parameter (for which the knowledge of the exact
solution is necessary) because it is automatically
defined inside the inversion process and adaptively
updated iteration by iteration.

4. Conclusions

An inversion procedure developed in the frame-
work of Lebesgue spaces with variable exponents has
been considered in this article. For the first time, this
kind of approach is applied to the quantitative dielectric
reconstruction of buried structures, in which the
problem is more challenging with respect to the free-
space setting. The presented numerical results, obtained
with a cross-borehole measurement configuration,
demonstrate the potentialities of the proposed approach
in the retrieval of the dielectric properties of the targets,
also compared with the fixed exponent techniques.
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