

URSI Commission B School for Young Scientists

Fields and Waves in Metamaterials

Lecture Notes

August 16-17, 2014

Beijing Conference Center Beijing, China

URSI Commission B School for Young Scientists

Fields and Waves in Metamaterials¹

Lecture Notes

August 16-17, 2014

Beijing Conference Center Beijing, China

¹ This School is organized during the "XXXI URSI General Assembly and Scientific Symposium" (URSI GASS 2014), August 16-23, 2014, Beijing, China.

Copyright © URSI Commission B, Fields and Waves. All rights reserved.

Table of Contents

Preface Program	1 3
Biographical Sketch of Course Instructor	6
Fields and Waves in Metamaterials By Professor Nader Engheta, University of Pennsylvania, USA	7
Part 1 Part 2	9 43

Preface

The "URSI Commission B School for Young Scientists" is organized by URSI Commission B and is arranged on the occasion of the "XXXI URSI General Assembly and Scientific Symposium" (URSI GASS 2014) in Beijing, China. This School is a two-day event held during URSI GASS 2014, and is sponsored jointly by URSI Commission B and the URSI GASS 2014 Local Organizing Committee. The School offers a short, intensive course, where a series of lectures will be delivered by a leading scientist in the Commission B community. Young scientists are encouraged to learn the fundamentals and future directions in the area of electromagnetic theory from these lectures.

Program

1. Course Title

Fields and Waves in Metamaterials

2. Course Instructor

Professor Nader Engheta University of Pennsylvania Philadelphia, PA, USA

3. Course Program

Lecture 1

- Date and Time: 14:00-18:00, Saturday August 16, 2014
- Venue: Meeting Room 12, 2nd floor, Conference Building Beijing Conference Center, Beijing, China
- Lecture Topics: Metamaterials: Basic Principles Metasurfaces and Graphene Optical Metatronics

Lecture 2

- Date and Time: 8:00-12:00, Sunday August 17, 2014
- Venue: Meeting Room 12, 2nd floor, Conference Building Beijing Conference Center, Beijing, China
- Lecture Topics:
 Extreme-parameter metamaterials
 Metamaterial Guided and Radiating Structures
 Cloaking

Lecture Abstract

Fields and Waves in Metamaterials

Nader Engheta H. Nedwill Ramsey Professor University of Pennsylvania Philadelphia, PA 19104, USA Email: engheta@ee.upenn.edu Web: http://www.seas.upenn.edu/~engheta/

Metamaterials and Plasmonic structures provide mechanisms for controlling and taming electromagnetic fields and waves in unprecedented ways. New directions, novel vistas and new applications are appearing in the horizon in the fields of metamaterials and its 2-D version, metasurfaces. In particular, when the extreme scenarios are considered, e.g., ultrathin structures (graphene), extreme near field (vortex in subwavelength near field), and extreme parameters (epsilon-near zero (ENZ), mu-near-zero (MNZ), epsilon-and-mu-near-zero (EMNZ)), numerous exciting possibilities for the interaction of waves with matter may occur. These may include design of metamaterials for scattering management in numerous applications where low or high scattering is desired, "metafunctional platforms" that can be formed on the metamaterial paradigms, and new functionalities may result from proper combinations of meta-systems and metamaterials. We have been exploring various features and characteristics of these concepts, topics, and directions in metamaterials, and we have been investigating new classes of applications such paradigms may provide. Some of the features of interest include nonlinearity, anisotropy, chirality, non-reciprocity, and non-locality. In this School, we will discuss the following topics:

Lecture 1

Metamaterials: Basic Principles Metasurfaces and Graphene Optical Metatronics

Lecture 2 Extreme-parameter metamaterials Metamaterial Guided and Radiating Structures Cloaking

Biographical Sketch of Course Instructor

Nader Engheta is the H. Nedwill Ramsey Professor at the University of Pennsylvania in Philadelphia, with affiliations in the Departments of Electrical and Systems Engineering, Bioengineering, Physics and Astronomy, and Materials Science and Engineering. He received his B.S. degree from the University of Tehran, and his M.S and Ph.D. degrees from Caltech. Selected as one of the Scientific American Magazine 50 Leaders in Science and Technology in 2006 for developing the concept of optical lumped nanocircuits, he is a Guggenheim Fellow, an IEEE Third Millennium Medalist, a Fellow of IEEE, American Physical Society (APS), Optical Society of America (OSA), American Association for the Advancement of Science (AAAS), and SPIE-The International Society for Optical Engineering, and the recipient of numerous awards for his research including 2014 Balthasar van der Pol Gold Medal from the International Union of Radio Science (URSI), 2013 Benjamin Franklin Key Award, 2013 Inaugural SINA Award in Engineering, 2012 IEEE Electromagnetics Award, 2008 George H. Heilmeier Award for Excellence in Research, the Fulbright Naples Chair Award, NSF Presidential Young Investigator award, the UPS Foundation Distinguished Educator term Chair, and several teaching awards including the Christian F. and Mary R. Lindback Foundation Award, S. Reid Warren, Jr. Award and W. M. Keck Foundation Award. His current research activities span a broad range of areas including nanophotonics, metamaterials, nano-scale optics, graphene optics, imaging and sensing inspired by eyes of animal species, optical nanoengineering, microwave and optical antennas, and engineering and physics of fields and waves. He has co-edited (with R. W. Ziolkowski) the book entitled "Metamaterials: Physics and Engineering Explorations" by Wiley-IEEE Press, 2006. He was the Chair of the Gordon Research Conference on Plasmonics in June 2012.

August 16-17, 2014

Professor Nader Engheta University of Pennsylvania Philadelphia, Pennsylvania USA

<u>Part 1</u>

Nader Engheta

University of Pennsylvania Philadelphia, PA 19104, USA

August 16-17, 2014

Metamaterials Samples (2000-2013)

Smith, Schultz group (2000)

Boeing group

Wegener group (2009)

Atwater group (2007)

Capasso group (2011)

Shalaev group (2011)

Zhang group (2008)

Engheta group (2012)

Electronic Modules

Channel Capacity = $B \log_2 \left(1 + \frac{S}{N} \right)$

C. Shannon

Development of Antennas

From: http://www.sparkmuseum.com

R. W. P. King

S.A. Schelkunoff

Metamaterial Gadgets?

Metamaterial Gadgets?

Optical Lumped Circuit Elements: Modular Blocks

Engheta, <u>Science</u>, 317, 1698 (2007) Caglayan, Hong, Edwards, Kagan, Engheta, <u>Phys. Rev. Lett. (</u>2013) Engheta, <u>Physics World</u>, 23(9), 31 (2010) Sun, Edwards, Alu, Engheta, <u>Nature Material</u>, March 2012 Engheta, Salandrino, Alu, <u>Phys. Rev. Lett.</u> 95 (2005)

Engheta, <u>Science</u>, 317, 1698 (2007)

Alu, Young, and Engheta, Phys. Rev. B (2008)

Y. Sun, B. Edwards, A. Alu, and N. Engheta, <u>Nature Materials</u>, March 2012

Experimental Verification at IR

Circuit Theory Model

$$Z_{wire}^{par} \equiv \frac{l}{\omega h w \varepsilon_{Si_3N_4}}$$

$$Z_{air-gap}^{par} \equiv \frac{l}{\omega hg \varepsilon_{air}}$$

$$Z_{equivalent}^{par} \equiv \frac{Z_{wire}^{par} \cdot Z_{air-gap}^{par}}{Z_{wire}^{par} + Z_{air-gap}^{par}}$$

(b) +k to the second s

g = 75nm

 $T^{par} = \left| \frac{Z_{equivalent}^{par}}{Z_{equivalent}^{par} + \left[\eta_o / \left(2(W+g) \right) \right]} \right|^2 \qquad W = 75nm, 125nm, 225nm$

Y. Sun, B. Edwards, A. Alu, and N. Engheta, <u>Nature Materials</u>, March 2012

Y. Sun, B. Edwards, A. Alu, and N. Engheta, <u>Nature Materials</u>, March 2012

<image><image><image><complex-block><complex-block>

24

TCO NIR Metatronic Circuits Fabrication and Experimental Results

Caglayan, Hong, Edwards, Kagan, Engheta, <u>Phys. Rev. Lett. 111, 073904 (</u>2013)

Nano-Optics Circuit Boards

Electronic Circuit Board

Metatronic Circuit Board

Alu and Engheta, Phys. Rev. Lett., 2009

Experimental Verification of Displacement-Current Wire

11.0

B. Edwards and N. Engheta, *Physical Review Letters*, May 7, 2012

From a "Filter" to a "Filter"

<section-header><image><image><image><image><image><image><image><image><image><image><image>

Fields and Waves in Metamaterials: Part 1

A. Alu and N. Engheta, <u>Phys. Rev. B. 2008</u>

27

Picasaweb.google.com/.../YOKis5Vf7nhDG5dGAoSD0w

Li, Salandrino, and Engheta, Phys. Rev. B, 76, 245403 (2007)

D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, H. Giessen, Nature Communications, 2014

One-Atom-Thick Optical Devices

Region 1: $\sigma_{g,i} > 0$ $\mu_c = 150 \text{ meV}$ Region 2: $\sigma_{g,i} < 0$ $\mu_c = 65 \text{ meV}$

A. Vakil and N. Engheta, Science, 2011

Vakil, Engheta, Phys. Rev. B, (2012)

Metasystems

Signal-Processing Metamaterials?

 $g(x_1, x_2, \cdots) = \iiint f(u_1, u_2, \cdots) k(x_1, x_2, \cdots; u_1, u_2, \cdots) du_1 du_2 \cdots$

Metamaterial Analog Computer?

Fourier-Transform

 $F(\overline{x}, \overline{y})$: Fourier Transform [f(x, y)]

J. Goodman, <u>Fourier Optics</u>, 1994

"Differentiator" Metamaterial

"Differentiator" Metamaterial

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

 $\varepsilon_{ms}(y)/\varepsilon_{o} = \mu_{ms}(y)/\mu_{o} = i \left[\lambda_{o}/(2\pi\Delta)\right] \ln\left(-iW/(2y)\right)$ A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, <u>Science, Jan 2014</u>

Green's Function Approach

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

Green's Function Approach

2nd Differentiation: **Green's Function Approach** 5 2nd Derivative Input Output +5λ Re(Sim.)(x a1k02) Exact Im(Sim.)(x a1k02) 1 4 2 0 0 -2

-52

4

0.06

 $\lambda_0/24.2$

5λ

3

4.44

 $\lambda_0/212.9$

Width

2

5.98

 $\lambda_0/6.0$

-1 -5λ

ε,

d

1

 $\lambda_0/293.4$

BRUB	
	8
STUC WORLDWA	

5λ

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

0 1.2λ

6

0.01

 $\lambda_0/9.8$

7

-0.003

 $\lambda_0/25.0$

5

0.03

 $\lambda_0/12.1$

-4

-5λ

8

-2.12

 $\lambda_0/3.6$

Width

10

0.08

 $\lambda_0/2.4$

9

2.30

 $\lambda_0 / 14.5$

2nd Differentiation: Green's Function Approach

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, Jan 2014

Nader Engheta

University of Pennsylvania Philadelphia, PA 19104, USA

August 16-17, 2014

Light-Matter Interaction

 $\omega \leftrightarrow 2\pi/T$

A

 $k \equiv \frac{2\pi}{\lambda} = \omega \sqrt{\varepsilon \mu}$

Metamaterials

N. Engheta, <u>Science</u>, 340, 286 (2013)

 $H = const. \qquad inside ENZ material. \qquad n = \sqrt{\epsilon \mu} \to 0$ M. Silveirinha & N. Engheta, <u>Phys. Rev. Lett.</u> 97, 157403, Oct 2006

A. Alu, M. Silveirinha, N. Engheta, Phys. Rev. E., 78, 016604 (2008)

A. Alu, N. Engheta, Phys. Rev. B., 78, 045102 (2008)

A. Alu, N. Engheta, Phys. Rev. B., 78, 035440 (2008)

M. Silveirinha & N. Engheta, Phys. Rev. Lett. 97, 157403, Oct 2006

"Supercoupling" in Sub-/ Channels

M. Silveirinha & N. Engheta, Phys. Rev. Lett. 97, 157403, Oct 2006

M. Silveirinha & N. Engheta, Phys. Rev. Lett. 97, 157403, Oct 2006

M. Silveirinha & N. Engheta, Phys. Rev. B., 76, 245109 (2007)

$\varepsilon_{ch}=1$

B. Edwards, A. Alu, M. Young, M. Silveirinha, N. Engheta, Phys. Rev. Lett., 100, 033903, 245109 (2008)

Waveguide Bends with Narrow Channels

180-degree Waveguide Bends

B. Edwards, A. Alù, M. Silveirinha, N. Engheta Journal of Applied Physics, 2009

Waveguide Bends with Narrow Channels

A. Alu, M. Silveirinha, N. Engheta, Phys. Rev. E., 78, 016604 (2008)

Plasmonic Channels and ENZ Tunneling

A. Alù and N. Engheta <u>Phys. Rev. B,</u> 78, 2008

ENZ and Spontaneous Emission Rate of Optical Emitters

A. Alu and N. Engheta, Phys. Rev. Lett. 103, 043902 (2009)

A. Alù and N. Engheta <u>Phys. Rev. Lett.</u> 2009

Enhancement of Optical Emitters

ENZ and Purcell Effects

A. Alù and N. Engheta <u>Phys. Rev. Lett.</u> 2009

Collaboration with Albert Polman's Group in AMOLF

E. J. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman Phys. Rev. Lett., 110, 013902 (2013)

Experimental Verification Using CL Spectroscopy

Collaboration with Albert Polman's Group in AMOLF

E. J. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman Phys. Rev. Lett., 110, 013902 (2013)

Experimental Verification Using CL Spectroscopy

Collaboration with Albert Polman's Group in AMOLF

E. J. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman Phys. Rev. Lett., (2013)

Collaboration with Albert Polman's Group in AMOLF

E. J. Vesseur, T. Coenen, H. Caglayan, N. Engheta, A. Polman Phys. Rev. Lett., 110, 013902 (2013)

Experimental Verification ENZ Stack

Collaboration with Albert Polman's Group in AMOLF

R. Maas, J. Parsons, N. Engheta, A. Polman Nature Photonics, 7(11), 907-912 (2013)

Dielectric Sensing

A. Alù and N. Engheta, Phys. Rev. B., 78, July 2008

A. Alù and N. Engheta, Phys. Rev. B., 78, July 2008

Nonlinearity in ENZ Channels

D. Powell, A. Alù, B. Edwards, A. Vakil, Y. Kivshar, and N. Engheta, <u>Phys. Rev. B.</u> 2009.

Nader Engheta

University of Pennsylvania Philadelphia, PA 19104, USA

August 16-17, 2014

http://math.ucr.edu/home/baez/graphene.jpg

Graphene Conductivity

$$\sigma_{g}(\omega,\mu_{c},\Gamma,T) = \frac{-ie^{2}(\omega+i2\Gamma)}{\pi\hbar^{2}} \left[\frac{1}{(\omega+i2\Gamma)^{2}} \int_{0}^{\infty} \Omega\left(\frac{\partial f_{d}(\Omega)}{\partial\Omega} - \frac{\partial f_{d}(-\Omega)}{\partial\Omega}\right) d\Omega - \int_{0}^{\infty} \frac{f_{d}(-\Omega) - f_{d}(\Omega)}{(\omega+i2\Gamma)^{2} - 4(\Omega/\hbar)^{2}} \Omega \right]$$

P. Gusynin et al., J. Phys: Condens. Matter, 19 (2007)

G. Hanson, J. Appl. Phys. 103, 064302 (2008)

P. Gusynin et al., J. Phys: Condens. Matter, 19 (2007)

SPP along Graphene

S. A. Mikhailov, K. Ziegler, <u>Phys. Rev. Lett.</u> 99, 016803 (2007)
G. Hanson, <u>J. Appl. Phys.</u> 103, 064302 (2008)
M. Jablan, H. Buljan, M. Soljacic, <u>Phys. Rev. B.</u>, 80, 245435 (2010)

Vakil, Engheta, <u>Science</u> 332, 1291 (2011)

Vakil, Engheta, <u>Science</u> 332, 1291 (2011)

One-Atom-Thick Waveguides

Graphene SPP Lens

One-Atom-Thick Signal Processing: Fourier Transform

Vakil, Engheta, <u>Phys. Rev. B, (</u>2012)

Graphene Fourier Optics

Vakil and Engheta, Phys. Rev. B (2012)

Graphene SPP Mirror

One-Atom-Thick SPP Reflector

Vakil and Engheta, Optics Communications, (2012)

One-Atom-Thick SPP Reflector

Vakil and Engheta, Optics Communications (2012)

Graphene Metamaterials

One-Atom-Thick ScattererRegion 1: $\sigma_{g,i} > 0$ $\mu_c = 150 \text{ meV}$ Region 2: $\sigma_{g,i} < 0$

 $\mu_c = 65 \ meV$

