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Abstract

In this work we present and discuss the case of a reconfig-
urable, Mach–Zehnder interferometer-based photonic net-
work, specially designed for implementing any arbitrary
matrix operator. After a brief discussion on the available ar-
chitectures we describe the main elements of the proposed
architecture. Finally, using simulations we demonstrate a
practical example where an 11×11 MZI network is imple-
ment for the solution of differential equation.

1 Introduction

The emerging field of analog computing with photonic de-
vices and metastructures is attracting an increasing research
interest, especially for the cases where computationally in-
tensive mathematical operations are performed directly at
the hardware level, i.e., utilizing specially designed ultra-
fast, low-power, wave-based or electronic structures and
networks that perform these operations [1, 2, 3]. For in-
stance, such an inverse-designed metastructure was imple-
mented to demonstrate the solution of integral equations
with an all-wave approach [4], opening new avenues for
the exploration of wave/photonic devices for mathematical
processes.

The main building-block for constructing the required re-
configurable photonic networks/operators is a four-port
(two inputs, two outputs) tunable coupler, also know as
Mach–Zehnder Interferometer (MZI) [5, 6, 7, 8, 9]. This
device enables the control over the phase and amplitude of
a given input. The proper connection between these MZIs
facilitates the implementation of any given operator/kernel.

Here, inspired by the aforementioned works, we expand the
introduced metastructure concept of [4] in two directions:
(a) by proposing a reconfigurable structure that can imple-
ment any given operator and (b) by generalizing the avail-
able matrix-inversion capabilities, e.g., towards the solution
of differential equations and other linear problems.

2 Solving equations with MZI networks

Perhaps the oldest category for calculating matrix inverses,
hence solving linear equations, at the hardware level are

networks of optical lenses and filters [10, 11]. These net-
works have been used for performing different kind of oper-
ators, however all in the Fourier optics domain. Key feature
is the necessary feedback mechanism that enables the equa-
tion solving/matrix-inverting capabilities.

In photonic network technology, there are mainly two ways
for implementing a given operator using an assembly of
MZIs. These approaches require the mathematical decom-
position of the desired operator using (a) a QR decom-
position (RZBB/CHMKW architecture) [5, 12, 13], and
(b) an SVD decomposition (Miller architecture) [6, 13].
Alternative approaches follow the example of field pro-
gramming gate arrays but for their photonic counderparts,
e.g., utilizing photonic waveguides as in [14]. In every
case, the proper operator implementation requires several a-
priori mathematical calculations, i.e., solution of an eigen-
value/decomposition problem (QR or SVD) or via the solu-
tion of a system of equations.

Inspired by the above contributions, we propose a general
architecture that can be used for implementing any arbitrary
operator in simple and intuitive manner without the need of
any a-priori mathematical calculations. The architecture
can be seen in Fig. (1). The main kernel/operator, i.e., a
N×N matrix, consists of four stages: (a) the ingress, (b)
the middle, (c) the egress, and (d) the gain stage. The first
stage comprises of a series of N power splitters, each divid-
ing the input signal into N equal components with the same
phase as the input phase, but with 1/

√
N of the input mag-

nitude. Each splitter can be realized either as a cascade of
N−1 MZIs with fixed (θ ,φ) pairs, or a specially designed
photonic splitter, e.g., via inverse design [15]. All the out-
puts are directed to the middle stage where a dedicated MZI
controls the required matrix component values. Next, these
signals are properly recombined to the egress stage, where
N combiners, i.e., the opposite of the ingress splitters, re-
combine the output signals. Finally, the gain stage offers
the required amplification to the output signals for covering
the general cases of any non-unitary operators [8]. The out-
put signal is then directed to the input via a feedback loop,
implemented by N directional couplers.

The feedback loop essentially implements a type of
Richardson iterative scheme [16]. The proper choice of the
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Figure 1. Schematic of the proposed architecture for a 2×2 example operator. The inset pictures provide a legend explaining
the basic elements used, i.e., the MZI, the coupler and the amplifier. The open loop kernel has four stages, i.e., (a) ingress, (b)
middle, (c) egress, and (d) gain stage. For each stage we have: (a) the ingress stage consists of 2 splitters. Each splitter divides
each input signal into 2 identical output signals each with amplitude 1√

2
relative to the input, hence, a total of 4 outputs are

created after the ingress stage. (b) These 4 outputs of are connected with 4 MZIs, each representing a complex-valued element
of the 2×2 matrix/operator. The egress stage (c) opposite the ingress stage, i.e., 2 MZIs that re-combine the 4 outputs into to 2
outputs. Finally, the gain stage (d) restores any path losses and amplifies the output for the case of non-unitary matrices.

kernel can give the solution to the general linear problem,
Ax = b. More details regarding the mathematical theory
required for this iterative technique will be discussed in the
presentation.

3 Discussion

Since the aforementioned network can implement any lin-
ear operator, we focus our attention on a more practical
case, i.e., solving linear differential equations. For exam-
ple, we utilize an 11×11 MZI structure for solving a pop-
ular differential equation appearing in many quantum me-
chanics and optics problems, the Airy equation:

d2 f (x)
dx2 +(k)2x f (x) = 0 (1)

where k can be an arbitrary complex parameter. The general
solution of the above equation is described in terms of the
Airy functions of the 1st and 2nd order, Ai(x),Bi(x), i.e.

f (x) = c1Ai
(
− k2

k4/3 x
)
+ c2Bi

(
− k2

k4/3 x
)

(2)

Finding a solution of the above equation requires the trans-
formation of the continuous problem into a correspond-
ing discrete version via the finite differences (FD) method.
The resulting FD problem can be expressed in matrix form
Ax = b, hence the unknown solution can be approximated
as the matrix inversion of this linear problem using our MZI
system.

Assuming a Dirichlet-type boundary-value problem, i.e.,
f (0) = 1, f (1) = 0, for k = 2π we have an analytical so-
lution that can be seen in Fig (2). The retrieved simula-
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Figure 2. Comparison between the exact solution (solid
lines), the computationally inverted matrix (solid red dots)
and the retrieved simulation results following the iterative
MZI method (orange cross) for a 1D Airy equation for k =
2π at the interval x ∈ [0,1]. The agreement between the
analytical and the numerical methods is excellent. More
technical details will be discussed in the presentation.

tion results by the MZI implementation (yellow) indicate
an excellent agreement between both the analytical solu-
tion (solid blue line) and the numerical solution using a
MATLAB code (red dots). Note that the MATLAB code
implements a software version of the FD methodology used
with the MZI networks. A detailed theoretical analysis and
other mathematical subtleties will be further expanded and
discussed in the presentation.
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