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Abstract

In this paper, we analyze scattering of an obliquely incident
plane quasi-electrostatic wave by a metal cylinder parallel
to the ambient magnetic field in a plasma. The electromag-
netic field of scattered wave and its directivity pattern are
found analytically. Calculations are performed for the typi-
cal parameters of the whistler mode frequency range in the
Earth’s magnetosphere.

1 Introduction

In the near-Earth plasma, it is very common that the quasi-
electrostatic (QE) waves are received by spacecraft-borne
antennas. We mention here (a) the two-point tethered rocket
experiment OEDIPUS-C in which the QE wave packets
were transmitted and received by electric dipoles in the
ionosphere [1] and (b) detection of QE whistler-mode cho-
rus emissions onboard THEMIS spacecraft in the magneto-
sphere [2] as the examples of the reception of QE waves of
artificial and natural origin, respectively.

One of the problems concerning reception of the QE waves
using antennas in magnetoplasmas is the correct calcula-
tion of the antenna effective, or electric, length leff. Indeed,
it was shown using the fundamental principle of reciprocity
(which is also correct in gyrotropic media) that leff can be
∼ 10 times larger than the antenna geometric length (see [3]
and references therein). Such a difference is because of
strong reradiation of the incident QE wave by an antenna.
However, the reradiation problems can obviously be con-
sidered as the scattering, or diffraction, problems. There-
fore, it is important to develop another approach to leff cal-
culation, namely, the approach based on the QE wave scat-
tering problem.

In general, the QE wave scattering problem can be solved
only numerically, e.g., using the method of moments,
which, as it was shown in [4], works even in the case when
a kernel of the corresponding integral equation has a singu-
larity due to the resonance cone. However, it is important
to have analytical solutions in some simple cases in order to
be able to verify numerical methods. Consequently, in this
paper we analyze scattering of an obliquely incident plane
QE wave by a metal cylinder parallel to the ambient mag-

netic field in a plasma. Similar problems have been stud-
ied for many years: some preliminary remarks concerning
2D problems of diffraction in anisotropic media are found
in [5]; in [6], a 2D problem of diffraction by a conducting
circular cylinder clad by an anisotropic plasma sheath was
solved; in [7], an infinite cylindrical antenna in a concen-
tric sheath of free space immersed in an anisotropic plasma
was analyzed; in [8], the same problem was analyzed but
the sheath was neglected; scattering by an infinite cylin-
der coated with an inhomogeneous and anisotropic plasma
sheath was considered in [9]; a very good explanation of
the theory of radiation and scattering in anisotropic media
is found in [10]. However, it has not been studied yet how
a plane QE wave is scattered by a metal cylinder in a mag-
netoplasma.

2 Formulation of the Problem and Basic
Equations

We consider a perfectly conducting infinitely long circu-
lar cylinder of radius a parallel to the ambient magnetic
field in a plasma (see Figure 1). The electric and mag-
netic fields of the incident QE wave, with the time factor
exp(iωt) dropped, are

~E(i) = ~E(i)
0 exp[−ik0(qy+ pz)], (1)

~H(i) = ~H(i)
0 exp[−ik0(qy+ pz)] (2)

where k0 = ω/c is a wavenumber in free space, p =
(k(i)/k0)cosθres, q = (k(i)/k0)sinθres, k(i) is a wavenumber
of the incident wave, and θres is the resonance angle. The
QE wave fields (1) and (2) satisfy equations

rot~E(i) = 0, rot ~H(i) = iωε0ε̂~E(i), (3)

where ε0 is the electric constant,

ε̂ =

ε −ig 0
ig ε 0
0 0 η


is the cold plasma dielectric tensor (so cot2 θres = |ε/η |),
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ωc and ωp are the cyclotron frequency and the plasma fre-
quency of electrons, respectively. Here we neglected the
contribution of ions which is possible under the condition
ω � ωLH, where ωLH is the lower hybrid frequency. In
what follows, we consider the whistler mode frequency
range so ε > 0, η < 0. Constants ~E(i)

0 and ~H(i)
0 in (1) and (2)

are related to each other because of (3). We assume that
|~E(i)

0 |= 1 in this paper.

Figure 1. Geometry of the problem.

The electric and magnetic fields of a scattered wave that we
are to find satisfy equations

rot ~H = iωε0ε̂~E, rot~E =−iωµ0~H (4)

where µ0 is the magnetic constant. In cylindrical coordi-
nates (ρ,ϕ,z) (see Figure 1), we represent these fields as[

~E(ρ,ϕ,z)
~H(ρ,ϕ,z)

]
=

+∞

∑
m=−∞

[
~Em(ρ)
~Hm(ρ)

]
exp(−imϕ− ik0 pz). (5)

Substitution of these expansions into (4) gives equations for
longitudinal components of the fields in sum (5):

L̂mEm,z− k2
0

η

ε

(
p2− ε

)
Em,z =−ik2

0
g
ε

pZ0Hm,z, (6)

L̂mHm,z− k2
0

(
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g2

ε
− ε

)
Hm,z = ik2

0
g
ε

η pZ−1
0 Em,z, (7)

where Z0 is the impedance of free space,

L̂m =
d2

dρ2 +
1
ρ

d
dρ
− m2

ρ2 .

The solution of these equations [both Em,z(ρ) and Hm,z(ρ)]
is a cylinder function of order m [11]. As for the case con-
sidered here we note that the solution should correspond to
the outgoing waves of energy (since ε > 0 and η < 0, the
waves of phase propagate in the opposite direction, from
ρ = +∞ to ρ = a, if we limit ourselves within the trans-
verse, with respect to the anisotropy axis, direction). Con-
sequently, for exp(iωt), the solution is

Em,z =
i
η

2

∑
k=1

Ak,mnkqkH(1)
m (k0qkρ), (8)

Hm,z =−
1
Z0

2

∑
k=1

Ak,mqkH(1)
m (k0qkρ), (9)

where Ak,m is a coefficient, H(1)
m (·) is the Hankel function

of the first kind of order m,
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The terms with k = 1 correspond to the evanescent O mode
(q1 is purely imaginary), and the terms with k = 2 corre-
spond to the propagating X mode (q2 > 0). Though the
terms with k = 1 vanish at some distance from the cylinder,
they contribute to the field structure in its vicinity.

The other components of ~Em(ρ) and ~Hm(ρ) are represented
in terms of Em,z(ρ) and Hm,z(ρ). The resulting expressions
have the following form [11]:
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where P2
x = ε−g.

Coefficients Ak,m (k = 1,2; m = 0,±1,±2, . . .) are found
from the boundary conditions for the total electric field at
ρ = a:

(E(i)
z +Ez)|ρ=a = 0, (E(i)

ϕ +Eϕ)|ρ=a = 0. (10)

For each given m, these conditions lead to a linear system
of two equations for A1,m and A2,m. The resulting expres-
sions for these coefficients are quite complicated and not
presented here.

We also note that the directivity pattern for the scattered
wave field (derived from the scattered wave electric field
|~E| at ρ →+∞) in this problem is expressed as

D(ϕ) =
d(ϕ)

max [d(ϕ)]
(11)



where

d(ϕ) =

∣∣∣∣∣ +∞

∑
m=−∞

A2,m exp
(
− iπm

2
− imϕ

)∣∣∣∣∣ . (12)

3 Calculation Results and Discussion

We performed calculations for ω ≈ 9.4 ·103 s−1, ωp/ω ≈ 5,
ωc/ω ≈ 17, and k(i)/k0 = 200. In Figure 2, the directivity
patterns are shown for 3 different values of χ ≡ k(i)asinθres.

Figure 2. Directivity patterns D(ϕ) for k(i)asinθres = 1.0
(top left), 1.5 (top right), 8.0 (bottom left), and 16 (bottom
right).

As it follows from Figure 2, when χ = 1, D(ϕ) has one
lobe (at ϕ = 270◦) corresponding to the forward scattering
(energy of the incident wave propagates in the direction of
−y, i.e., from ϕ = 90◦; see Figure 1). As χ increases, the
lobe corresponding to backward scattering (at ϕ = 90◦) ap-
pears and becomes significant. When χ reaches ∼ 16, two
weak side lobes at ϕ = 0◦,180◦ appear. Furthermore, it can
be shown that more weak side lobes appear as χ becomes
larger (e.g., χ ∼ 100). The conclusion from Figure 2 is that
the directivity pattern becomes more complicated as radius
a increases.

Finally we note that the QE waves typically have a contin-
uous and wide spectrum of wave numbers corresponding to
the plane waves that propagate along the resonance cone di-
rection. In such cases, the resulting expressions should in-
clude an integral over these harmonics. However, in many
cases it is appropriate to analyze one harmonic of QE waves
only. This may occur, e.g., when refraction in the magne-
tosphere is significant: in this case, a very narrow wave
packet is detected at the observation point because initially

wide packet spreads due to the fact that different harmonics
have different ray trajectories.
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