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Abstract

The solution of the electric field integral equation at low
frequency and/or high discretization regimes is one of main
computational bottleneck that compromises the efficiency
and accuracy of this equation. Therefore, effective precon-
ditioner is a must in order to reconstruct the scattered field
in many problems of practical interest. In this paper we
present a new preconditioner that efficiently stabilizes the
EFIE. It is based on multilevel spectral filters built from
primal and dual graph Laplacians. The sparsity of the latter
ensures an accelerated convergence with a minimal compu-
tational overhead.

1 Introduction

The Electric Field Integral Equation (EFIE) has become
a widely used computational tool for simulating electro-
magnetic radiation and PEC (Perfect Electric Conductor)
scattering. The key attribute of this scheme, in compar-
ison with differential equation-based method, is the rela-
tively small matrices it yields to, as it only requires the
discretization of the boundary of the scatterer. While the
system matrix obtained via the BEM (Boundary Element
Method) discretization of the EFIE is dense, its iterative so-
lution can be reduced to quasi-linear complexity by using
acceleration techniques such as the Multi-Level Fast Multi-
pole Method (MLFMM) [1]. The optimum performance of
the latter, however, is impeded by conditioning issues of the
EFIE occurring at low frequency and high-discretization
regimes [2]. The low frequency breakdown is due to the in-
verse scaling of the two operators of the EFIE, whereas the
high discretization breakdown is due to the EFIE’s diverg-
ing spectral branches [3]. The combination of those two
downsides prevents the use of standard EFIE to problems
of practical applications, because an ill-conditioned system
results not only in an increase in the number of iterations
used by an iterative solver, but also in a loss of accuracy.
Therefore, a preconditioner that cures both breakdowns is
indispensable for the modelization of electromagnetic fields
at low frequency and in the presence of complex geome-
tries.

In order to overcome both breakdowns, various alternative
have been devised, prominent among which are Calderón
identity-based techniques. This class of preconditioners ex-

ploits the analytic properties of the EFIE operator, which
states that squaring the EFIE operator results in an iden-
tity plus a compact operator [4]; hence a linear system with
bounded condition number. Standard implementation of
this regularizer, however, requires the use of the barycen-
tric refinement of the original mesh, thus increasing the
computational overhead. Another class of precondition-
ers that do not require the use of dual basis functions are
Hierarchical basis preconditioners [5]. Operating in the
Sobolev norm induced by the EFIE, those precondition-
ers yield a well-conditioned system that is independent of
h-refinement. Unfortunately however, those class of pre-
conditioners necessitate structured meshes and often results
in a non-multiplicative preconditioner. The first drawback
drastically limits their application and the second compli-
cate their incorporation in existing EFIE codes.

In this work, we present a new operator-based precondi-
tioner which avoids the use of barycentric-refined mesh
by directly operating on the original one. Its multiplica-
tive nature and quasi-linear complexity facilitate its inte-
gration with existing codes while maintaining the optimum
performance of standard acceleration techniques. The new
preconditioner leverages on graph Laplacian operators to
turn the EFIE into a well-conditioned integral equation.
Its straightforward implementation, however, would require
the expensive computation of fractional power and inverses
of the Laplacian, thus jeopardizing the efficiency of the reg-
ularizer. In order to overcome this limitation, we present a
set of strategies that operate in wavelet-like fashion to effi-
ciently build the preconditioner. In particular, this precon-
ditioner regularizes the two spectral branches of the EFIE
block by block with multilevel filters built from primal and
dual graph Laplacian matrices. Given the sparsity of the
latter, the EFIE is regularized at low computational effort.
Several numerical results validate the presented scheme
in canonical and realistic geometries. Preliminary results
about this scheme were presented in [6]

2 Background and notations

Consider a perfect electric conducting object Ω embedded
in a space characterized by a permittivity ε and permeabil-
ity µ . Let Γ be a Lipschitz surface representing the bound-
ary of Ω and n̂nn its outward pointing unit normal. A time
harmonic electromagnetic wave EEE i impinges on Ω induc-



ing an electric current on its surface, which then radiates
the scattered field EEEs. The latter can be computed by solv-
ing the EFIE which reads

−n̂nn(rrr)×EEE iii = T JJJ = TAJJJ+Tφ JJJ (1)

where TAJJJ and Tφ JJJ, being the vector potential and the
scalar potential respectively, are defined as

TAJJJ = n̂nn(rrr)× jk
∫

Γ

ejk‖rrr−rrr′′′‖

4π‖rrr− rrr′′′‖
JJJ(rrr′′′)dS(rrr′′′) (2)

Tφ JJJ =−n̂nn(rrr)× 1
jk

∇rrr

∫
Γ

ejk‖rrr−rrr′′′‖

4π‖rrr− rrr′′′‖
∇rrr′′′ · JJJ(rrr′′′)dS(rrr′′′) (3)

where k = ω
√

εµ denotes the wavenumber. This equation
is then numerically solved by (i) discretizing Γ into a tri-
angular mesh of average edge length h; (ii) expanding the
current density JJJ as a linear combination of div-conforming
(such as RWG) basis functions JJJ = ∑

N
n=1 In fff n(rrr) [7]; (iii)

testing the discretized EFIE with rotated RWG basis func-
tions n̂nn(rrr)× fff n(rrr) to obtain a linear system T j = e where
the left hand side is

T = jkTA +(jk)−1Tφ (4)

in which

TA = 〈n̂nn(rrr)× fff n(rrr),TA( fff n(rrr))〉 (5)

Tφ =
〈
n̂nn(rrr)× fff n(rrr),Tφ ( fff n(rrr))

〉
(6)

and the right hand side is e =
〈

fff n(rrr),−EEE i〉. With a condi-
tion number that grows as cond(T ) . 1/(hk)2, solving the
linear system of equation (4) iteratively becomes inconceiv-
able at low frequency and dense discretization regimes.

To cope with the low-frequency breakdown, the loop-star
decomposition has proved successful [8, 9]. This quasi-
Helmholtz decomposition separates the solenoidal and non-
solenoidal components of the current JJJ for a subsequent
suitable rescaling in frequency. In particular, let Λ andΣ be
the transformation matrices that map the RWG space into
the loop and star subspaces respectively. Then, a left and
right preconditioner of the form Υ = [Λ/

√
k Σ

√
k] elim-

inates the frequency related ill-conditioning. While with
this technique, the EFIE can be accurately solved at the
lower end of the spectrum, it does not however cure the
h-refinement breakdown. In fact, the condition number of
TLS = Υ

TTΥ deteriorates as cond(TLS). 1/h3.

3 The multilevel preconditioner

Preconditioning the h quadratic growth of the TLS system
requires an intrusive spectral regularization of two com-
ponents of the EFIE. Specifically, in the limit k → 0, the
discretization of the vector potential with loop functions is
equivalent to the static hypersingular operator discretized
with pyramid basis functions 〈λ ,N (λ )〉 [10]. It is well
known that this operator is unbounded having a derivative

strength of order 1 [11]. Using left and right precondition-
ing with the graph Laplacian of fractional order, the N
operator is amenable to a well-conditioned equation. Sim-
ilarly, in the limit k → 0, the discretization of the scalar
potential is related to the static single layer operator dis-
cretized with patch basis functions 〈Π ,S (Π)〉. This com-
pact operator of order -1 can also be regularized with the
dual graph Laplacian matrix of fractional order. Computing
fractional Laplacian, however requires the computationally
intensive eigendecomposition and results in a dense matrix,
hence making it unsuitable for many problems of practi-
cal interests. In order to avoid this drawback, we propose
a properly tailored multi-level spectral filters to regularize
the EFIE. This is efficiently achieved through sparse oper-
ations involving only the forward Laplacian matrices. In
particular, let PΛ

i and P Σ
i define low-pass filters

P Σ
i =

I

I+
(
∆Σ

2i

)n for i = 1 . . . log2(σ
Σ
max) , (7)

PΛ
i =

I

I+
(
∆Λ

2i

)n for i = 1 . . . log2(σ
Λ
max) , (8)

where ∆Σ = ΣTΣ and ∆Λ = ΛTΛ are the the primal and
dual graph Laplacians respectively. Subsequently, we build
the preconditioner as Qi = (Pi−Pi−1)

1√
σ i

max
in which the

normalization constant σ i
max is the largest singular-value of

the spectral interval
[
2i−1, 2i

]
. Finally we get the regular-

ized EFIE[
QΣ

i 0
0 QΛ

i

][
kΣ̃T(TA+Tφ)Σ̃ Σ̃TTAΛ

ΛTTAΣ̃
1
kΛ

TTAΛ

][
QΣ

i 0
0 QΛ

i

]
(9)

where Σ̃ =Σ
(
ΣTΣ

)+.

4 Numerical Results

As a first example, we consider a unit sphere discretized
into 3000 triangles and illuminated with a plane wave os-
cillating at different frequency. Correspondingly, a study of
the condition number of the standard EFIE is reported in
figure 1 showing the low frequency breakdown. Using our
new technique, the condition number stays stably small till
arbitrary low frequency; thus making the EFIE completely
immune from the low frequency breakdown.

In the second numerical test, we keep the frequency of the
plane wave fixed 1 Hz, while increasing the discretization
density. Figure 2 reports the condition number of the EFIE
matrix regularized with loop-star preconditioner. It is ev-
ident that the corresponding condition number deteriorates
as the average edge length decreases. Upon preconditioning
with our technique, the EFIE is regularized against dense
discretization breakdown.

As a final numerical experiment, we illuminated an aircraft,
discretized into 19k facets, with a 105 Hz plane wave. Pre-
conditioning the EFIE with the Laplacian spectral filters,
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Figure 1. Condition number as a function of the frequency
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Figure 2. Condition number as a function of number of
elements

Figure 3. The induced surface current

the iterative solver converged to the current solution, shown
on 3, in 500 iterations.
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