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Abstract

Electromagnetic wave excitation by a given nonsymmetric
source in the presence of a semi-infinite gyrotropic cylinder
located in free space is considered. The source-excited field
and the field scattered by the end of the cylinder are repre-
sented using eigenfunction expansions that refer to the re-
spective regions on both sides of the cylinder endface. The
distribution of the radiated power over the spatial spectrum
of the excited waves is numerically analyzed.

1 Introduction

In the past decades, an enhanced attention has been paid
to the problem of excitation of electromagnetic waves by
given currents in systems containing open gyrotropic guid-
ing structures. In the case where magnetoplasma is a gy-
rotropic medium, such a problem arises when describing,
e.g., helicon plasma sources, which are important for nu-
merous applications [1–3]. In most studies devoted to such
sources, consideration is limited to the excitation of only
the discrete-spectrum waves (eigenmodes), because they
play a major role in maintaining the helicon discharge.
Many works on the subject deal with the case where an
antenna is placed far from the ends of a plasma column
so that it can be represented as an infinitely long guiding
structure. For such a cylindrical waveguide located in free
space, the full-wave approach presented in [4] was applied
for the analysis of the energy characteristics of a helicon-
type source [5]. However, it is important in some cases to
take into account a finite length of the plasma cylinder and
consider diffraction by its ends [3].

In this work, the features of wave excitation by an antenna
with the nonsymmetric electric-current distribution in the
presence of a semi-infinite cylinder filled with a magneto-
plasma are considered. To find the energy characteristics
of such a source, the excited field and the field scattered
by the end of the cylinder are represented using eigenfunc-
tion expansions referring to the regions on both sides of the
cylinder endface.

2 Formulation of the Problem

Consider a semi-infinite cylinder of radius a that is located
in free space and has the symmetry axis coinciding with
the z axis of a cylindrical coordinate system (ρ,φ ,z). The
cylinder is placed in the region z < 0, and its endface lies in
the plane z = 0, as is shown in Fig. 1. The field is excited
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Figure 1. Geometry of the problem.

by an electric current specified on the side surface of the
cylinder between the planes z=−L−d and z=−L+d (see
Fig. 1). The current density can be written, with exp(iωt)
time dependence dropped, as

J(r) =(φφφ 0 jφ + z0 jz)δ (ρ−a)exp(−imφ − ik0 p̃z)

× [U(z+L+d)−U(z+L−d)] . (1)

Here, δ is the Dirac function, U is the Heaviside function, d
is the half-length of the antenna (the condition d < L is ful-
filled), the integer m and the constant p̃ determine the cur-
rent dependence on the azimuthal and longitudinal coordi-
nates, respectively, and k0 =ω/c is the wave number in free
space (c is the speed of light in free space). The total am-
plitude of the current can be written as |I0|2 = |Iφ |2 + |Iz|2,
where Iφ = 2d jφ and Iz = 2πa jz.

The plasma inside the cylinder, with a superimposed static
magnetic field B0 = B0z0, is described by the dielectric per-
mittivity tensor

ε̂ =

 ε −ig 0
ig ε 0
0 0 η

 , (2)
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Here, ωp and Ωp are the electron and ion plasma frequen-
cies, and ωH and ΩH are the gyrofrequencies of the cor-
responding particles, respectively. Note that the Gaussian
system of units is used throughout this work.

3 The Source-Excited and Diffracted Fields

Using the cylindrical symmetry of the problem, the longi-
tudinal components of the excited and diffracted fields can
be represented as[

Ez;s,m(r,q)
Hz;s,m(r,q)

]
=

[
Ez;s,m(ρ,q)
Hz;s,m(ρ,q)

]
e−imφ−ik0 ps(q)z. (4)

Here, the azimuthal index m is the same as in (1), the sub-
script s denotes the wave propagation direction, either posi-
tive (s=+) or negative (s=−), and q and ps(q) are the nor-
malized (to k0) transverse and longitudinal wave numbers in
free space, respectively. The function ps(q) obeys the rela-
tion p+(q)≡ p(q) =−p−(q), where p(q) = (1−q2)1/2. It
is assumed that Re[p(q)]> 0 if q is real and less than unity,
and Im[p(q)] < 0 otherwise. The transverse field compo-
nents Eρ;s,m, Eφ ;s,m, Hρ;s,m, and Hφ ;s,m can be found from
the longitudinal components (4). In what follows, we take
into account that only the waves with the azimuthal index
m are excited by the source.

The field excited by the given current (1) in the half-space
z< 0 is expanded in terms of eigenwaves of an open waveg-
uide and is written in the source-free regions as[

E(ex)
z (r)

H(ex)
z (r)

]
= ∑

n
as,m,n

[
Ez;s,m,n(ρ)
Hz;s,m,n(ρ)

]
e−imφ−ik0 ps,m,nz

+
2

∑
α=1

∫
∞

0
as,m,α(q)

[
Ez;s,m,α(ρ,q)
Hz;s,m,α(ρ,q)

]
e−imφ−ik0 pszdq. (5)

Here, s =+ for −L+d < z < 0 and s =− for z <−L−d;
the functions Ez;s,m,n(ρ) and Hz;s,m,n(ρ) describe the radial
distributions of the fields of the discrete-spectrum waves
(eigenmodes) with the radial index n and the longitudinal
wave numbers ps,m,n (p+,m,n = −p−,m,n = pm,n); and the
subscript α corresponds to two kinds of the continuous-
spectrum waves described by the functions Ez;s,m,α(ρ,q)
and Hz;s,m,α(ρ,q). Detailed expressions for these fields,
which constitute the complete set of eigenwaves of an open
gyrotropic cylindrical waveguide, can be found in [4]. The
quantities as,m,n and as,m,α(q) are obtained using the well-
known technique developed for finding the expansion coef-
ficients of the modes of open waveguides [6] and are given

by the expressions

as,m,n =
1

N+,m,n

∫
J(r) ·E(T)

−s,−m,n(r)dr

=
[

jφ E(T)
φ ;−s,−m,n(a)+ jzE

(T)
z;−s,−m,n(a)

]
× 4πa

N+,m,n

sin [k0(p̃− ps,m,n)d]
k0(p̃− ps,m,n)

e−ik0 ps,m,nL,

as,m,α(q) =
1

N+,m,α(q)

∫
J(r) ·E(T)

−s,−m,α(r,q)dr

=
[

jφ E(T)
φ ;−s,−m,α(a,q)+ jzE

(T)
z;−s,−m,α(a,q)

]
× 4πa

N+,m,α(q)
sin [k0(p̃− ps(q))d]

k0(p̃− ps(q))
e−ik0 psL, (6)

where integration is performed over the region occupied by
the current (1), the superscript (T) denotes fields taken in
an auxiliary medium that is described by the transposed di-
electric permittivity tensor ε̂T, and Ns,m,n and Ns,m,α(q) are
the norms of the discrete- and continuous-spectrum waves,
respectively, which follow from the orthogonality relations
presented in [4].

The field reflected from the cylinder end to the region z < 0
is also expanded in terms of eigenwaves of an open gy-
rotropic waveguide. The longitudinal components of the
reflected field, hereafter marked by the superscript (r), are
represented as[

E(r)
z (r)

H(r)
z (r)

]
=∑

n
b−,m,n

[
Ez;−,m,n(ρ)
Hz;−,m,n(ρ)

]
e−imφ+ik0 pm,nz

+
2

∑
α=1

∫
∞

0
b−,m,α(q)

[
Ez;−,m,α(ρ,q)
Hz;−,m,α(ρ,q)

]
e−imφ+ik0 pz dq, (7)

where b−,m,n and b−,m,α(q) are the expansion coefficients
to be found.

The field transmitted to the region z > 0 is expanded in
terms of the continuous-spectrum waves of free space as[

E(t)
z

H(t)
z

]
=

2

∑
γ=1

∫
∞

0
c+,m,γ(q)

[
Ez;+,m,γ(ρ,q)
Hz;+,m,γ(ρ,q)

]
e−imφ−ik0 pzdq, (8)

where the superscript (t) denotes the field transmitted to
free space, γ = 1 and γ = 2 correspond to the E- and H-
polarized waves, respectively, and c+,m,γ(q) are unknown
coefficients depending on q. The eigenwaves of free space
are written as

Ez;s,m,γ(ρ,q)=qJm(k0qρ)δγ,1,

Hz;s,m,γ(ρ,q)=qJm(k0qρ)δγ,2, (9)

where Jm is the Bessel function of the first kind of order m
and δα,β is the Kronecker delta.

Satisfying the boundary conditions for the tangential field
components at the plane z = 0, i.e.,

E(ex)
ρ +E(r)

ρ = E(t)
ρ , E(ex)

φ
+E(r)

φ
= E(t)

φ
,

H(ex)
ρ +H(r)

ρ = H(t)
ρ , H(ex)

φ
+H(r)

φ
= H(t)

φ
, (10)



and taking into account the orthogonality relations for the
eigenwaves in the regions z < 0 and z > 0, a system of
integral equations for the expansion coefficients b−,m,n,
b−,m,α(q), and c+,m,γ(q) is derived in the following form:

c+,m,γ(q)Ñ+,m,γ(q) = ∑
n

a+,m,nK+,m,n
−,−m,γ(q)

+
2

∑
α=1

∫
∞

0
a+,m,α(q̃)K

+,m,α
−,−m,γ(q̃,q)dq̃+∑

n
b−,m,nK−,m,n

−,−m,γ(q)

+
2

∑
α=1

∫
∞

0
b−,m,α(q̃)K

−,m,α
−,−m,γ(q̃,q)dq̃, (11)

b−,m,nN−,m,n =
2

∑
γ=1

∫
∞

0
c+,m,γ(q̃)M

+,−m,n
+,m,γ (q̃)dq̃, (12)

b−,m,α(q)N−,m,α(q)=
2

∑
γ=1

∫
∞

0
c+,m,γ(q̃)M

+,−m,α
+,m,γ (q, q̃)dq̃.

(13)

The norm of the eigenwaves of free space in (11) is given
by the formula

Ñs,m,γ(q) = (−1)m+γ cps/(k2
0q), (14)

and the kernels of integral equations (11)–(13) are written
as

Ks,m,n
−,−m,γ(q)=

c
4π

∫ 2π

0
dφ

∫
∞

0

[
Es,m,n(r)×H−,−m,γ(r,q)

−E−,−m,γ(r,q)×Hs,m,n(r)
]
·z0ρdρ,

Ks,m,α
−,−m,γ(q̃,q)=

c
4π

∫ 2π

0
dφ

∫
∞

0

[
Es,m,α(r, q̃)×H−,−m,γ(r,q)

−E−,−m,γ(r,q)×Hs,m,α(r, q̃)
]
·z0ρdρ,

M+,−m,n
+,m,γ (q̃)=

c
4π

∫ 2π

0
dφ

∫
∞

0

[
E+,m,γ(r, q̃)×H(T)

+,−m,n(r)

−E(T)
+,−m,n(r)×H+,m,γ(r, q̃)

]
·z0ρdρ,

M+,−m,α
+,m,γ (q, q̃)=

c
4π

∫ 2π

0
dφ

∫
∞

0

[
E+,m,γ(r, q̃)×H(T)

+,−m,α(r,q)

−E(T)
+,−m,α(r, q̃)×H+,m,γ(r,q)

]
·z0ρdρ.

(15)

The power carried through the cross section z= z0 <−L−d
to the negative direction of the z-axis is determined by the
expansion coefficients of the source-excited and reflected
fields as P(−) = Pmod +Pcs, where

Pmod =∑
n

Pn = ∑
n
|a−,m,n +b−,m,n|2P+,m,n (16)

describes the contribution of the discrete-spectrum waves
(Pn is the partial power going to the nth eigenmode),
whereas

Pcs =
2

∑
α=1

∫ 1

0
|a−,m,α(q)+b−,m,α(q)|2P+,m,α(q)dq (17)

describes the contribution of the continuous-spectrum
waves. Here, Ps,m,n and Ps,m,α are defined by the

power orthogonality relations presented in [5]. In deriv-
ing (16) and (17), the relations P+,m,n = −P−,m,n and
P+,m,α(q) =−P−,m,α(q) were used. The power transmit-
ted from the cylinder end to the region z > 0 is expressed
via the expansion coefficients for waves in free space as

P(+) =
2

∑
γ=1

∫ 1

0
|c+,m,γ(q)|2

cp(q)
4k2

0q
dq. (18)

4 Numerical results

Integral equations (11)–(13) were numerically solved us-
ing Simpson’s integration method. The powers going to the
eigenwaves of the cylinder and free space have been cal-
culated for the parameters a = 2.5 cm, d = 4a, p̃ = 0, and
m = 1, which are typical of helical antennas used in heli-
con plasma devices. It is assumed that the frequency of the
source belongs to the resonant interval ωLH < ω < ωH of
the whistler range, where ωLH = (ωHΩH)

1/2 is the lower-
hybrid frequency. The following values of the dimension-
less parameters of the plasma were used for calculations:
ωp/ωH = 12.7, ωLH/ωH = 3.7×10−3, and ωHa/c = 1.17.
Note that due to the fact that a magnetoplasma is resonant
in the considered frequency range, the cylinder supports an
infinite number of the propagating eigenmodes. Figure 2
shows the powers Pmod and Pcs as functions of L that varies
in the range 5a < L < 2λ0 (λ0 = 2π/k0 � a is the free-
space wavelength). All the values presented in this and the
forthcoming figures are normalized to the total power P0 ra-
diated from the same source in the case where the cylinder
is infinite. It is seen in Fig. 2 that the inequality Pmod� Pcs
holds for the chosen parameters. The power Pcs carried
by the continuous-spectrum waves increases notably at cer-
tain values of L/λ0, remaining to be less than Pmod. As
was shown by the calculations, the relation P(+) ' Pcs is
valid for the power going to the region z > 0 for each value
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Figure 2. The normalized powers Pmod (red line) and
Pcs (black line) as functions of the parameter L/λ0 for
ω/ωH = 2.5× 10−2, ωp/ωH = 12.7, ωLH/ωH = 3.7×
10−3, ωHa/c = 1.17, and jz = 0.25 jφ . The value of Pcs
is multiplied by 5.
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Figure 3. The normalized partial powers Pn for the individ-
ual eigenmodes with the radial indices n and the longitudi-
nal wave numbers pn for L = 0.423λ0 (a) and L = 0.697λ0
(b). Same parameters as in Fig. 2.

of L. Thus, the most of the radiated power goes to the
discrete-spectrum waves. Those of them that propagate in
the positive z-axis direction are almost entirely reflected
from the cylinder end. Note that the total radiated power
PΣ = Pmod +Pcs +P(+) can change with varying L because
of the interference of the excited and reflected waves.

The partial powers Pn going to the discrete-spectrum waves
(for the first 75 eigenmodes for which pn < 200) are shown
in Figs. 3(a) and 3(b) for two values of L/λ0. In the case
presented in Fig. 3(a), the ratio of the powers going to
the discrete- and continuous-spectrum waves amounts to
its minimum value Pmod/(Pcs +P(+)) ' 3 at L = 0.423λ0.
The corresponding value of L/λ0 is indicated by the vertical
dashed line in Fig. 2. The ratio of the powers changes peri-
odically with increasing L and reaches one of its maximum
values Pmod/(Pcs +P(+))' 2×103 at L = 0.697λ0. In this
case, the quantities Pn are presented in Fig. 3(b). It follows
from comparison of Figs. 3(a) and 3(b) that a notable re-
distribution of the partial powers over the spatial spectrum
occurs when the parameter L/λ0 varies.

5 Conclusions

In this work, the electromagnetic wave excitation has been
studied in the case where the nonsymmetric given source
is placed on the surface of a semi-infinite cylinder filled
with a magnetoplasma. The integral equations for the field
expansion coefficients of the waves diffracted by the end
of the cylinder have been derived and numerically solved.
The partial powers going to the discrete- and continuous-
spectrum waves as functions of the distance from the an-
tenna to the cylinder end have been analyzed. It has been
demonstrated that in the whistler frequency range, almost
all the radiated power goes to the eigenmodes, which are
then reflected from the cylinder end. It has also been estab-
lished that the distribution of the radiated power over the
spatial spectrum of excited waves noticeably depends on
the source position.
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