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Abstract

Despite its modelling efficiency, the boundary element
method (BEM) suffers from several sources of ill condi-
tioning that reduce its accuracy and impede its applicabil-
ity. The conditioning of the BEM matrix grows unbounded
in three different regimes: (i) when the discretization den-
sity is constant and the frequency decreases, (ii) when the
frequency remains constant and the discretization density
increases and (iii) when the frequency increases while the
mesh parameter remains at a fixed ratio of the wavelength.
While the simultaneous stabilization of regime (i) and (ii)
has been obtained leveraging on Calderén preconditioning
and on the quasi-Helmholtz projectors, the last regime re-
mains problematic. However, the intrinsic ill-conditioning
caused by the frequency increase should not be confused
with the periodic ill-conditioning caused by spurious reso-
nances, which is out of the scope of this study. In this paper,
instead, we present a scalar and a vector electric field inte-
gral formulation that are stable in all three regimes, sym-
metric, and do not require the computation of the dense
matrices on the barycentric refinement of the geometry.

1 Introduction

The electric field integral equation (EFIE) is one of the most
established schemes for characterising scattering phenom-
ena by perfect electrically conducting (PEC) bodies. The
popularity of this formulation, discretized with the bound-
ary element method (BEM), follows from the reduced num-
ber of unknowns to be solved for, since only the scatterer’s
boundaries are discretized, from its automatic enforcement
of the radiation conditions, and from its resilience to nu-
merical dispersion. Despite these numerous advantages, be-
cause the system matrices are dense, the EFIE must be com-
bined with fast solvers, such as the fast multipole method
[1], to obtain a solution in linear complexity. The linear
complexity of the resolution requires, however, the system
matrices to be well-conditioned.

The electric field integral operator (EFIO), like most elec-
tromagnetic integral operators, is ill-conditioned in several
regimes: (i) when the simulation frequency decreases while
the discretization density is fixed and (ii) when the dis-

cretization density increases at a fixed frequency. The low
frequency regime (i) and dense discretization regime (ii)
have been widely studied and have satisfactory remedies.
However, an ill-conditioning that can not be cured with the
same techniques occurs when (iii) the frequency increases
while the ratio between the mesh parameter and the wave-
length remains constant.

The low frequency breakdown of the EFIE — regime (i) —is
typically stabilized by decomposing the formulation into its
solenoidal and non-solenoidal parts, to treat each part inde-
pendently and make their behaviour compatible, thus fixing
the root cause of the ill-conditioning. This Helmholtz de-
composition can be obtained via loop-star approaches [2],
that do however worsen the dense-discretization behaviour
— regime (ii) — of the equation or via quasi-Helmbholtz pro-
jectors [3] that do not share this drawback. Other ap-
proaches rely on the computation of auxiliary variables but
incur a non-negligible computational overhead. The dense
discretization behaviour has successfully been tackled by
leveraging on the Calderdn identities that recognize that the
EFIO can fix its own instability. The simultaneous stabi-
lization of both regimes has been obtained more recently by
combining a Calderén approach with the quasi-Helmholtz
projectors [3]. This technique, however, requires the dense
electromagnetic operators to be computed on the barycen-
tric refinement of the mesh. A subsequent work lever-
ages on Helmbholtz operators to attain this dual stabiliza-
tion without barometrically refined electromagnetic opera-
tors [4].

In the high frequency regime two distinct sources of ill-
conditioning should not be confused; the unbounded con-
ditioning number degradation with increasing frequency
(and corresponding discretization) and the periodic ill-
conditioning caused by the spurious internal resonances of
the EFIO are distinct phenomena. These spurious reso-
nances are typically handled via a combined field integral
equation (CFIE), and will not be treated in this contribu-
tion. We will instead focus on the intrinsic ill-conditioning
of regime (iii).

In this paper, we introduce two new symmetric electric
field integral formulations, one vector and one scalar, that



exhibit a stable conditioning in all three regimes of inter-
est: (i) the low frequency regime, (ii) the dense discretiza-
tion regime and, and (iii) the high frequency regime. The
stabilization of the high and low frequency behaviour of
the formulation is obtained via quasi-Helmholtz projectors
and carefully built Helmholtz operators, while the dense
discretization behaviour will be cured using a Calderén-
like approach. The resulting formulation does not require
any barycentric refinement of dense operators. Some early
developments and partial results have been previously re-
ported in [5] and will be developed further in the present
contribution. The validity of the schemes will be demon-
strated through a spherical harmonics analysis and numeri-
cal experiments.

2 Notation and Background

The EFIE relates the surface current density j induced by
an impinging electric field E' on the boundary I of a PEC
object residing in a background medium of conductivity €
and permeability [ as

(T J)(r) = —a(r) x E¥(r), 0
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N =\/u/e, k=2nf/u€ and A(r) is the normal of T..
To solve the equation with numerical methods, the un-
known current density is expanded as a linear combina-
tion of Rao-Wilton-Glisson (RWG) basis functions {f;},
J(r) = YN [jlif:(r) and the resulting equation is tested
with rotated RWG functions {# x f;}. Finally, the linear
system is

nTj=é, (5)

where T = —jkTs — (—jk)~'T}, [Ts]l-j = <ﬁ><fi,<%fj>,
[Tv];j = (AX fi,%0f;), and [€'], = (Ax f;,—AxE").
The following section will involve several families of basis
function and their dual: the RWG basis functions f and the
Buffa—Christiansen functions f [6], the patch basis func-
tions p and their dual p, and the pyramid basis functions
A and their dual A. Along with these basis functions we
define the corresponding Gram and mixed-Gram matrices
as

[Gab]ij = <ai7bj> ) (6)

where a and b represent potentially different families of ba-
sis functions.

3 New formulations

To overcome the three breakdown of the EFIE we introduce
a new formulation, vector in nature, intended as a drop-
in replacement of the standard equation, and a second one
designed to replace an EFIE that has already undergone a
loop-star decomposition.

In the vector formulation, the Helmholtz decompositions
are obtained through the quasi-Helmholtz projectors Py =
A(ATA)AT, which projects to the solenoidal subspace and
Py, = L(XTE)2T which projects to the non-solenoidal sub-
space. In particular, the projectors are used to obtain the
Helmholtz decomposition of the # x 7 operator. The
solenoidal and non-solenoidal parts of the operator are then
carefully preconditioned using vector Helmholtz operators
to render them immune to problems (i), (ii), and (iii). For
the non-solenoidal operator we obtain

KRax T (A+k2.9)  ax T, 7
while for its solenoidal counterpart we have
k*hx T (A+kp ) ax T, (8)

in which A is the vector Laplacian defined on I and kp, =
k 4+ 0.4jk'/3R=2/3 is a wavenumber that makes it possible
to precondition the EFIO with a modified vector Helmholtz
operator on a radius R sphere [7]. The resulting operator is
discretized, following a Galerkin approach, as

v _ T —1 —1 +

2 =T%, (G?ﬁfoAGﬁxf] —|—H):) Trz, (9

where, for readability, we have defined
> _ + _
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Hs :z(—G;p‘ +kI2HZz) T, (13)

Taz = ((=jk)'PA+Pg)T(Pa—jkPy).  (14)
For this discretization to be stable at arbitrarily low frequen-
cies, the terms ThPp, PaTh, Hy P, PAHy, HAG.' Py

axf.f
and PZG;:; H  must be explicitly set to 0.

xf

The scalar formulation can be derived in a similar fashion:
the solenoidal and non-solenoidal parts of # x 7

Ihn=V-Ax(Ax T)AxV, (15)
T =A"'V.-(Ax T)VA~L, (16)

are stabilized in regimes (i) to (iii) by multiplying them with
Helmholtz operators of opposite behaviour, which yields
the loop-star blocks

kK2 TZA T (At kS ) AT T (17)
A (A+K2.7) AT, (18)
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Figure 1. Spectrum of (a) k"2.7\A~! .7, at different fre-
quencies showing an unbounded growth of the highest sin-
gular value and (b) (A+k%.#)A~! showing an opposite
behaviour.

The key concept behind this preconditioning is to build
surrogate operators from traditional Helmholtz operators,
that exhibit a spectral behaviour that is the opposite of the
problematic spectrum of the electromagnetic operator. For
instance while k=2 7\A~1.7, is of pseudo-differential or-
der 0 and low frequency stable, it still has an high fre-
quency ill-conditioning (Figure 1a). By multiplying it by
(A+k2.#) A" that has an opposite behaviour (Figure 1b),
a well-conditioned operator can be obtained. The resulting
scalar equation is discretized in block form as

, LiHLL 0
7' = TES 0 G:lLSH+LS G7~l Tys, (19)
Ap S PA

where the different blocks are built out of the sub-matrices

L =—A"G A, (20)

L= szGrz, (21)

Hy =L +k,Gaz (22)

Hg = Lg +k?nGII s 23)

E=2(2"8)" G, (24)
—jk)~IAT =

Tis = [( ! %T } T[A —jk2]. (25)

In this formulation too, the low frequency stability of the

discretization requires that the terms AT}, and ThA be ex-
plicitly set to 0. The new scalar equation (19), while sta-
ble, has a nullspace of dimension 2 spanned by the constant
vector that can be removed by proper deflections, however
these derivations are left out for brevity.

4 Numerical Results

To verify their validity we have performed a spherical har-
monics analysis of the two formulations. On a sphere of
radius R, the new operators (17) and (8) can be shown to
admit as eigenvectors Y}, and #t x VY},,, respectively, where
Y}, is the spherical harmonic of order / with m taking values
in [—/, {]. While different, these eigenvectors are associated
to the same eigenvalues

_ 2 2/ 1(I+1)
on(lk) = k2 (Jl(kR)Hl( )(kR)) (— - +k$n> ,
(26)
where Hl(z) is the Riccati-Hankel function and J; is the

Riccati-Bessel function. A similar analysis of the non-
solenoidal operators (18) and (7) provides the eigenvalues

o5 (1,k) = kK (J,’(kR)H,<2)'(kR))2 <l<l +1) +k§) o

R2
27)
The eigenvalues obtained though this analysis (Figures 2a
and 2b) demonstrate the stability of the operators in the high
frequency regime since their maximum eigenvalue remains
bellow one, while the convergence of the elliptic to 1/4 in-
dicates their dense discretization stability.

To further confirm the stability of our schemes beyond
spheres, we have studied the evolution of the condition
number of the vector formulation on a complex geometry,
in the dense discretization (Figure 3a) and low frequency
(Figure 3b) regimes. In both cases the new formulation be-
haves as expected and remains well-conditioned, while the
standard EFIE becomes severely ill-conditioned.

5 Conclusion

We have introduced two new electric type integral equa-
tions that overcome the limitations of the standard EFIE in
the low frequency, dense discretization, and high frequency
regimes. These stabilized formulation, one vector and one
scalar, are built by preconditioning the original EFIO (or its
solenoidal and non-solenoidal components) with Helmholtz
operators that are computed with a modified wave number.
The vector formulation serves as a replacement of the stan-
dard EFIE, while the second one is intended to replace a
loop-star decomposed EFIE. These formulations have the
advantage of only requiring sparse operators to be com-
puted on the barycentric mesh and not the dense electro-
magnetic ones.
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Figure 2. Absolute value of the (a) solenoidal and (b) non-solenoidal eigenvalues of the new vector and scalar formulations at

different frequencies.
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Figure 3. Comparison of the conditioning of the new vec-
tor formulation against the standard EFIE on the structure
illustrated as insert in the dense discretization (a) and low

frequency (b) regimes.
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