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Abstract

A scheme to evaluate the physical optics (PO) integral on
third order triangles in time domain is presented. Using the
Radon transform interpretation of the radiation integrals,
the PO integral on the surface modeled with third order tri-
angles is reduced to a line integral and evaluated exactly
using Gauss-Legendre quadrature rule (GLQR). A numeri-
cal example that demonstrates the accuracy and validity of
the proposed scheme is presented.

1 Introduction

The physical optics (PO) approximation is one of the most
preferred high-frequency techniques to analyze scattering
and radiation from electrically large objects [1]. Analysis
using the PO approximation requires evaluation of a highly-
oscillatory radiation integral, which is called PO integral,
on the illuminated surface of the scatterer. The PO integral
can be evaluated analytically or approximately on different
surface models that are used to discretize the scatterer, such
as linear triangles [2], quadratic triangles [3]-[6], NURBS
surfaces [7], [8]. It is possible to evaluate the PO integral
in closed-form using the Radon transform interpretation,
when the scatterer is modeled with linear triangles [2]. Us-
ing the closed-form expressions for linear triangles removes
the numerical errors in the evaluation of the PO integral,
however modeling errors remain, especially for curved scat-
terers. In order to reduce the modeling errors, high order
surface models can be used [3]-[8]. Recently, a scheme to
exactly evaluate the PO integral on quadratic (second order)
triangles is proposed in [5]. In [5], the PO integral on the
quadratic triangle is reduced to a line integral on a quadratic
curve that is formed by the intersection of the quadratic tri-
angle and a plane formed by the incidence and observation
directions. The intersecting curve is determined in barycen-
tric coordinates of the quadratic triangle. Using the appro-
priate coordinate transformations depending on the type of
the quadratic curve, the intersecting curve is parametrized
and Gauss-Legendre quadrature rule (GLQR) is applied on
the parametrized curve to exactly evaluate the line integral.
It is shown that using quadratic triangles models the curved
surfaces with higher accuracy using less number of patches
[5], [6].

In this work, the scheme presented in [5] is extended to
the exact evaluation of the PO integral on third order trian-
gles. Similar to the scheme presented in [5], the intersecting
curve is determined in barycentric coordinates, however us-
ing the Dirac delta function’s properties, GLQR is applied
to the intersecting curve directly in barycentric coordinates
without parametrizing the curve and requiring a coordinate
transformation. As a result, the PO integral on third order
triangles can be determined exactly. A preliminary exam-
ple is presented to demonstrate the accuracy of the proposed
scheme.

2 Formulation

Let S denote a perfect electrically conducting (PEC) scat-
terer’s surface. S is illuminated by an impulsively excited
plane wave with the electric field component Einc(r, t) =
p̂δ (t− k̂i · r/c), where k̂i and p̂ are the propagation direc-
tion and polarization of the incident plane wave, respec-
tively, δ (·) denotes the Dirac delta function, and c is the
speed of light. Assuming that the illuminated part of the
scatterer S, i.e. Sill, is discretized with third order triangles
as Sill '

⋃
Sn, where Sn denotes the nth third order triangle,

the scattered electric field [7] can be determined as

Esca(r, t) =− 1
2πc

∂tδ (t− r/c)
r

∗Esca
rc (k̂s, t), (1)

where ∂t and “ ∗ ” denote time derivative and convolution,
respectively, k̂s is the observation direction, and Esca

rc (k̂s, t)
is the range-corrected scattered electric field [9]

Esca
rc (k̂s, t) = k̂s× k̂s× (k̂i× p̂)×∑

N
n=1 hn(t). (2)

In (2), hn(t) denotes the PO integral and defined as

hn(t) =
∫

Sn

n̂(r′)δ
(

t− kr · r′

c

)
dr′, (3)

where n̂(r) is the outward pointing unit normal vector of Sn
and kr = (k̂i− k̂s)/2 defines a plane, called kr-plane [5]. As
a first step, it is assumed that coordinate system is rotated
as r′→ r′p, where kr ‖ x̂′p. Using the Dirac delta function’s
properties and barycentric coordinates of the third order tri-
angle (α,β ), hn(t) can be given as

hn(t) =
c

2 |kr|

∫
Sn

n̂(r′p)δ
(

ct
2 |kr|

− x′p

)
dαdβ . (4)



Figure 1. Norm of the range corrected scattered electric
field.

Note that r′p and x′p depend on (α,β ), since any point on
the third order triangle is represented in barycentric coordi-
nates by r(α,β ) = ∑

10
i=1 Ni(α,β )ri, where ri and Ni(α,β ),

i = 1, . . . ,10, are the nodes and shape functions of the third
order triangle, respectively. The intersecting curve of the
third order triangle and the kr-plane can be determined us-
ing

0 =
ct

2 |kr|
− xp(α,β ) (5)

=
ct

2 |kr|
−∑

10
i=1 Ni(α,β )xp,i.

Once the intersecting curve is determined, using the Dirac
delta function’s properties, the integral in (5) can be re-
duced to a line integral on the intersecting curve and the
hn(t) integral can be determined exactly using a suitable
order GLQR.

3 Numerical Example

In this section, backscattering from a third or-
der triangle with the nodes r1 = (−0.901,0.434,0),
r2 = (−0.874,0.327,0.358), r3 = (−0.586,0.749,0.308),
r4 = (−0.906,0.405,0.121), r5 = (−0.897,0.368,0.242),
r6 = (−0.802,0.482,0.352,), r7 = (−0.703,0.627,0.335),
r8 = (−0.715,0.666,0.213,), r9 = (−0.824,0.557,0.106),
r10 = (−0.818,0.526,0.232) is analyzed for k̂i = −ẑ,
k̂s = ẑ, as a preliminary example. 3-point GLQR is used
to evaluate the line integral and time step size ∆t = 1.11
ps. Fig. 1 plots the norm of the range corrected scattered
electric field Esca

rc (k̂s, t) for the third order triangle and
compares them with the results obtained for 23328 linear
triangles model produced by repeatedly dividing the third
order triangle into third order and linear sub-triangles and
using the closed-form expressions given in [2]. Fig. 2 plots
the backscattered radar cross section (RCS) obtained by
discrete Fourier transforming the time domain results in
0−2 GHz frequency band with ∆ f = 10 MHz as explained
in [5]. It can be seen from Figs. 1 and 2, the results
obtained for the third order triangle and 23328 linear
triangles coincide very well.

Figure 2. Backscattered RCS results.

4 Conclusion

In this work, a scheme for exact evaluation of the time
domain PO integral on third order triangle patches using
Radon transform interpretation is proposed. A preliminary
example that demonstrates the accuracy of the proposed
method is presented.
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