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Abstract 
 
This paper investigates the discretization of a periodic 
metasurface and demonstrates how such a surface can 
achieve perfect anomalous reflection. Whilst most 
contemporary theoretical works on metasurfaces deal with 
continuous current or impedance distributions, we examine 
how discretization affects a metasurface, and show that in 
some cases one can discretize a metasurface aggressively – 
to the extent of having only two cells per spatial period. 
Such aggressive discretization can lead to great 
simplifications in metasurface design, and perhaps more 
surprisingly, a possible performance improvement from 
continuous metasurfaces. Using this aggressive 
discretization technique, we report the design of a binary 
Huygens’ metasurface which reflects an incident plane 
wave at 50° into a reflected direction of –22.5°. Full-wave 
electromagnetic simulation shows the achievement of 
anomalous reflection with a power efficiency of 99.1%, 
which dramatically surpasses the performance of a 
corresponding passive continuous metasurface, for which 
the power efficiency is fundamentally limited to 69.6%. 
 
1. Introduction 
 
In recent years the metasurface has emerged as a ubiquitous 
tool for wavefront manipulation. By tuning the 
electromagnetic parameters of the metasurface, one can 
modify, almost at will, the amplitude, phase, polarization 
and direction of reflected and transmitted waves [1, 2]. In 
particular, Huygens’ metasurfaces [3-5] — which feature 
orthogonal magnetic and electric responses — afford 
tremendous flexibility in tuning an input plane wave into 
output waves travelling in any direction of interest, 
including near-grazing, retroreflection and anomalous 
directions. A metasurface is typically conceptualized as a 
surface with continuously varying electromagnetic 
properties, but it is often implemented as a surface with 
discretized elements. To avoid discretization effects, very 
fine discretization steps, such as λ/8 or less, are often used, 
where λ represents the free space wavelength of the 
intended illumination. 
 
We think that a study on the discretization of metasurfaces 
will prove fruitful in the following ways. Firstly, it allows 
one to take into explicit consideration how discretization 
affects the metasurface. Secondly, it potentially allows the 
construction of aggressively discretized metasurfaces, 
which in some cases feature only two element per grating 

period. Aggressive discretization may lead to simplified 
metasurface designs, avoid inter-elemental coupling 
effects, and lead to metasurface designs which are robust 
and cost effective. Finally, and perhaps most surprisingly, 
in some cases one can design aggressively discretized 
metasurfaces which perform better than their continuous 
counterparts. In this paper, we shall provide a brief 
discussion on discretization effects on periodic 
metasurfaces, and demonstrate the aforementioned 
advantages with a metasurface which achieves perfect 
anomalous reflection. 
 
2. Metasurface Discretization 
 
As shown in the schematic in Fig. 1, a periodic metasurface 
diffracts an incoming plane wave into an integer number of 
propagating diffraction modes. The plane waves and 
diffraction orders, which are represented in Fig. 1 as ݇௬-
space distributions, map straightforwardly into the angular 
domain through the relationship  
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For a periodic metasurface with spatial period Λ௚  and 
spatial frequency ݇௚ ൌ Λ௚/ߨ2 , the upper-bound on the 
number of outgoing diffraction modes is  
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ቝ	 (2), 

 
where ۀ∙ڿ is the ceiling operator. 

Figure 1. A schematic showing the spatial frequency 
components of an incident plane wave (red), the periodic 
metasurface (blue), and the resultant reflected waves 
(green). The region of propagating waves (purple box) is 
highlighted in the panel for reflected waves. In all three 
panels, arrows indicate the presence of a plane wave or 
diffraction order, but do not represent information about 
their amplitudes and/or phases. 



 
A mathematical analysis of discretization effects lies 
beyond the scope of this paper. Notwithstanding, one can 
reason that, in order to have sufficient degrees of freedom 
to determine the strengths and phase of all ܰ diffraction 
modes, one needs to discretize the metasurface to ܰ 
elements per spatial period (Λ௚). From this reasoning, one 
can deduce that (2) also describes the minimal number of 
elements per grating period required in the discretization. 
 
We note that in (2) ܰ  varies with the inverse of ݇௚ . 
Especially, for ݇௚ ∈ ሾ݇଴, 2݇଴ሻ, ܰ ൌ 2. This means for this 
range of spatial frequencies, a very aggressive 
discretization of two cells per grating period suffices for 
tuning all propagating modes which emerge from the 
metasurface. In the following we shall apply this to design 
a metasurface that features perfect anomalous refraction. 
 
 
3. Perfect Anomalous Reflection 
 
Whereas conventional grating theory seems to suggest one 
can bend a reflected wave into any direction without 
accruing power loss or requiring gain, recent investigations 
on metasurfaces have shown otherwise. Upon rigorous 
analysis involving Maxwell’s equations and the 
corresponding boundary conditions, [6, 7] show that, to 
achieve total power conversion from an incident plane 
wave to an arbitrarily directed reflected wave, one needs to 
realize with a surface which is lossy on half its surface area 
and active on the other half. The authors of [7] proceed to 
show such a metasurface [8], which operates by converting 
an incoming wave into a surface wave in the “lossy” 
region, and relaunching this surface wave in the “active” 
region. [9] provides an alternative approach, where 
auxiliary waves, evanescent in nature, are involved to 
balance the local power density profile without affecting 
the far-field radiation, thus avoiding the need for lossy and 
active regions. Regardless, both methods require 
complicated designs and manipulation. Without resorting 
to such methods, the maximum power transfer from an 
incoming plane wave into a reflected one is limited, by the 
wave impedance mismatch, to  
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where ܵ௭௜ and ܵ௭௥ are the z-directed Poynting vector of the 
incident and reflected waves, and ߠ௜  and ߠ௥  respectively 
represent the angles the incoming and reflected waves form 
with the surface normal. 
 
We shall demonstrate a somewhat surprising fact that, 
using an aggressively discretized metasurface, one can 
surpass the aforementioned limit and achieve perfect 
anomalous reflection using a simple passive metasurface. 
Our proposed metasurface selectively synthesizes parts on 
the continuous metasurface which are purely reactive and 
hence is able to perform anomalous reflection without 

accruing loss or requiring gain. In reconciling with the 
point of view of [9], it can also be said that the radical 
discretization of our metasurface produces evanescent 
diffraction modes, which can function similar to auxiliary 
modes to mitigate the need for active or lossy metasurface 
elements. In the following we shall present target 
specifications, our design process, and validation results 
from full-wave simulation using Ansys HFSS. 
 
4. Design and Simulation 
 
The diagram in Fig. 2a sets the geometry of our 
consideration. The metasurface lies on the xy-plane. A 24 
GHz TE-polarized plane wave impinges the metasurface 
from angle of ߠ௜ ൌ 50° with respect to the surface normal. 
We wish to design a metasurface which reflects all the 
incident power into an outgoing plane wave at ߠ௥ ൌ
െ22.5°. For these specified angles,  
 
 ݇௚ ൌ ݇଴|sin ௥ߠ െ sin |௜ߠ ൌ 1.15݇଴  (4). 
 

Figure 2. Perfect anomalous reflection metasurface 
design. (a) Diagram showing the geometry of the 
metasurface, and the wavevectors for the incident ( ሬ݇റ௜ ), 
anomalously reflected ( ሬ݇റ௥) and specular ( ሬ݇റ௦) waves. (b) 
The geometry of a unit cell, with ௫ܷ ൌ ܷ௬ ൌ 5.44 mm, 

௭ܷ ൌ 1.575  mm and ௬ܲ ൌ 0.5 mm. (c) A plot of the 
reflection coefficient as ௫ܲ is swept from 1 mm to 5 mm. 

Figure 3. Simulation results for the anomalous reflection 
metasurface. (a) The magnitude of the incident electric 
field at a reference phase point. (b) The magnitude of the 
scattered electric field at the same phase point. The 
designed incidence and reflection directions are drawn in 
for comparison. The small black squares highlight the 
dipole locations in this simulation. 



A substitution into (2) shows that this grating can be 
aggressively discretized to two cells per grating period; 
further, it can be found through a stipulation of 
electromagnetic fields that at these discretization points the 
local reflection coefficients should differ by 180°.  
 
We implement this metasurface using a ground-backed 
dipole structure shown in Fig. 2b. We have shown earlier 
[10-11] that this structure constitutes a Huygens’ source, 
for which the reflection phase can be tuned by changing the 
dipole length along the direction of the electric field. For 
this design we employ a substrate with a dielectric constant 
of ߳௥ ൌ 2.2, a thickness of 1.575 mm, and plated on both 
sides with perfect conductors. This material system 
corresponds to that of the Rogers RT/duroid 5880 
substrate, with material losses removed. To achieve the 
required ݇௚ we choose a y-directed unit cell size of ܷ௬ ൌ
௚݇/ߨ ൌ 5.44 mm. We choose ܷ௫ ൌ ܷ௬ and ௬ܲ ൌ 0.5 mm. 
Fig. 2c shows the reflection coefficient of an infinite 2D 
array of the unit cell, as a function of a sweep in the dipole 
length ( ௫ܲ), found from full-wave simulation using Ansys 
HFSS. As initial dimensions, we choose two lengths to 
construct our metasurface which give rise to a reflection 
phase difference of 180°. 
 
Fig. 3 shows full-wave simulation results when we create 
the metasurface by placing the aforementioned elements 
side-by-side. In this simulation stage, we re-optimized the 
dipole lengths to account for reflection phase changes 
caused by mutual coupling effects with neighbouring 
elements. The optimized dipole lengths are ௫ܲଵ ൌ 1.5 mm 
and ௫ܲଶ ൌ 4.71 mm. A 2D Floquet simulation shows that 
99.1% of the power is transferred from 50° incidence to –
22.5° reflection, while the remainder of the power remains 
in the specular direction. This causes the ripple in the 
scattered wave as seen in Fig. 3b. We can further improve 
these results with finer optimization steps and improved 
simulation accuracy. Notwithstanding, our results show 
that with our aggressively discretized design, we obtained 
clear improvements over a straightforward, continuous 
implementation of a passive metasurface, for which the 
optimal power transfer into the single reflected wave is 
69.6% — as found by substituting ߠ௜ and ߠ௥ into (3). 
 
5. Conclusion 
 
In this work we presented a brief investigation to obtain 
some measure on the minimal required discretization for a 
periodic metasurface. Using this knowledge we 
demonstrated an aggressively discretized perfect 
anomalous reflection metasurface, which converted an 
incident wave at 50° into a reflected wave at –22.5°, with a 
power efficiency of over 99%, as found from full-wave 
electromagnetic simulation. This represents the simplest 
yet implementation of a perfect anomalous reflection 
metasurface. This work also showcases the advantages of 
aggressively discretizing a metasurface — that they lead to 
robust metasurfaces designs which can, in some cases, 
outperform their continuous counterpart. 
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