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Abstract 
 
In this contribution, we exploit inverse scattering and the 
spectral properties pertaining to different linear 
approximated solution approaches to design invisibility 
cloaks. By paralleling results holding for the well-known 
Born approximation (BA), a Fourier based analysis is 
derived for the Contrast Source Extended Born and the 
Strong Permittivity Fluctuation approximations. Then, the 
derived arguments are conveniently exploited to reach 
invisibility and a first numerical assessment is performed 
in case of BA by exploiting the “alternate projections” 
method. 
 
1. Introduction 
 
The concept of invisibility always had great interest. The 
current idea of making objects invisible is pursued by 
several research groups around the world, since it has 
been observed that is possible to “hide” a given object, 
making it effectively invisible to the electromagnetic 
radiation, by means of ad-hoc materials. In this respect, 
the new concept of invisibility cloaking has been recently 
proposed.  
Several invisibility techniques have been developed in the 
last years by looking at different kinds of objects. Among 
them, the Scattering Cancellation (SC) [1] and the 
Transformation Optics (TO) [2] theories are worth to be 
mentioned.  
The SC is based on the cancellation effect of the 
polarization vector induced in the cloaking system by 
covering the object with a volumetric material (cloak). 
Notably, such a goal is accomplished in case of small 
(with respect to the wavelength) scatterer, since the 
cancellation of the first order harmonics of the scattered 
field is pursued [1]. As a consequence, the cloaking is 
object-dependent and it is valid under a quasi-static limit 
approximation.  
Conversely, the TO is able to exclude fields from the 
interior of an invisible system while bending the radiation 
just outside. Interestingly, the invisibility device is object 
independent, as any object located in the excluded region 
of the space will be invisible. Unfortunately, the price to 
pay is that the constitutive parameters of coats should 
change continuously point by point and require the 

cloaking material to be inhomogeneous and strongly 
anisotropic [3]. 
In this contribution, a simple approach to reach 
invisibility is proposed within the inverse scattering 
framework. The solution of an inverse scattering problem 
(ISP) is not a trivial task due to the intrinsic non linearity 
and ill-posedness of the problem itself [4], so that 
regularization techniques are needed to restore well-
posedness. To counteract the non-linearity, the adoption 
of linearizing approaches seems instead to be attractive. 
Among them, the well-known Born approximation (BA) 
[5] which is valid for weak scatterers, is the common one 
and it has given rise to a number of different 
approximations by looking at different classes of objects. 
By considering the spectral properties of the unknown 
function involved in the approximated approach at hand, 
in the following we will show how they can be 
conveniently exploited for invisibility devices design.  
In particular, the electromagnetic model pertaining to the 
Contrast Source Extended Born (CS-EB) [6,7] and the 
Strong Permittivity Fluctuation (SPF) [8] are firstly 
recalled; then, a Fourier based analysis will be derived for 
the arising linear approximations CS-EBA and SPFA. 
Finally, such an analytical study will be used to design an 
invisibility cloak by means of a very simple procedure. 
 
2. The CS-EB model and approximation 
 
As is well known, the ISP within the BA is viable and 
accurate when weak scatterers are looking for [5]. In this 
case, the unknown total field inside the investigation 
domain Ω  is approximated by the incident field 𝐸#  and 
hence the problem is linearized. An improvement over the 
BA is achieved in the (contrast source) extended Born 
model [6], for which the pertaining Born series is derived 
in the following. 
Let consider the state equation governing the ISP, for the 
2D TM scalar problem (the factor exp	(𝑗𝜔𝑡) is assumed 
and dropped): 
 
𝑊 𝒓, 𝒌𝒕 = 𝜒 𝒓 𝐸# 𝒓, 𝒌𝒕

+ 𝜒 𝒓 𝑔 𝒓, 𝒓′ 𝑊 𝒓7, 𝒌𝒕 𝑑𝒓′
9

 (1) 

 
wherein 𝒌𝒕 indicates the vector of the incidence direction, 
𝐸# 𝒓, 𝒌𝒕 = 𝑒;<𝒌𝒕∙𝒓 is the incident field, 𝜒 is the unknown 



contrast function, 𝑊 = 𝐸𝜒  is the auxiliary unknown 
contrast source, 𝐸  being the total field, while 𝑔(𝒓, 𝒓′) =
−𝑗/4𝐻B

C (𝑘E 𝒓 − 𝒓′ ) is the Green’s function of the free-
space, 𝑘E  being the pertaining wavenumber and 𝒓 =
(𝑥, 𝑦) ∈ 	Ω.  
By adding and subtracting 𝑊 𝒓, 𝒌𝒕  into the integral 
operator, eq.(1) recast as: 
 
𝑊 𝒓, 𝒌𝒕 = 𝜒 𝒓 𝐸# 𝒓, 𝒌𝒕 + 𝜒 𝒓 𝑊 𝒓, 𝒌𝒕 𝑓9 𝑟

+ 𝜒 𝒓 𝐴#LMN 𝑊 𝒓, 𝒌𝒕  
(2) 

where 𝑓9 𝒓 = 𝑔 𝒓 − 𝒓′9 𝑑𝒓′ , 𝐴#LMN 𝑊 𝒓, 𝒌𝒕 =

𝑔 𝒓 − 𝒓′9 𝑊 𝒓′, 𝒌𝒕 − 𝑊 𝒓, 𝒌𝒕 𝑑𝒓′. 
 
By formally inverting eq.(2) and defining: 

𝑝 𝒓 =
𝜒 𝒓

𝐼 − 𝜒 𝒓 𝑓9 𝒓
 (3) 

one achieves the following relation, 𝐼  being the identity 
operator: 

𝑊 𝒓, 𝒌𝒕 = 𝐼 − 𝑝(𝒓)𝐴#LMN 𝑊 𝒓, 𝒌𝒕 ;Q𝑝 𝒓 𝐸# 𝒓, 𝒌𝒕  (4). 

If 𝑝(𝒓)𝐴#LMN 𝑊 𝒓, 𝒌𝒕 < 1, ∙  being the ℓC-norm, a 
series expansion for the inverse operator can be 
performed, thus obtaining the CS-EB series: 

𝑊 𝒓, 𝒌𝒕 = 𝑝(𝒓)𝐴#LMN 𝑊 𝒓, 𝒌𝒕 U
VW

UXB

𝑝 𝒓 𝐸# 𝒓, 𝒌𝒕  (5). 

From the singular nature of the Green’s function when 
𝒓7 = 𝒓, one may expect that the last term in eq.(2) can be 
neglected; by referring to the CS-EB series (5), it means 
that the first term is the dominant one and the CS-EB 
approximation (CS-EBA) is derived as: 

𝑊 𝒓, 𝒌𝒕 = 𝑝 𝒓 𝐸# 𝒓, 𝒌𝒕  (6). 

Finally, by substituting eq.(6) into the data equation of the 
ISP, one achieves: 

𝐸Y 𝒌𝒐, 𝒌𝒕 = 𝐴[ 𝑊 𝒓, 𝒌𝒕 = 𝐴[ 𝑝 𝒓 𝐸# 𝒓, 𝒌𝒕  (7) 

wherein 𝐸Y  is the scattered field, 𝒌𝒐  is the vector of the 
observation direction and 𝐴[  is a short notation for the 
integral radiation operator. 
As it can be easily guessed from eq.(7), the ISP is now 
linear (but still ill-posed) with respect to the auxiliary 
function 𝑝 𝒓  [7]. 
 
3. The SPF model and approximation 
 
The SPF approximation (SPFA) has been introduced by 
Tsang and Kong [8] by exploiting the singularity of the 
Green’s function for the solution of the vectorial problem 
of wave scattering by random medium, in case of both 
small and large variance of the permittivity function. 
Let us consider the state equation (for the electric field) 
for the 2D vectorial case: 

𝑬 𝒓, 𝒌𝒕 = 𝑬𝒊 𝒓, 𝒌𝒕 + 𝑮 𝒓, 𝒓′ ∆𝑘C ∙ 𝑬 𝒓7, 𝒌𝒕 𝑑𝒓′
9

 (8) 

in which 𝑮 𝒓, 𝒓′ = 𝑰 − Q
ab
c ∇∇ 𝑔 𝒓, 𝒓′  is the dyadic 

Green’s function, 𝑰  is the 2D identity operator, ∆𝑘C =
𝑘C − 𝑘EC with 𝑘 the wavenumber of the random medium, 
while the symbol (∙) states for the inner product.  
As it is known, 𝑔 𝒓, 𝒓′  becomes singular when the 
observation point is inside the source region and therefore 
the integral expression (8) gives rise to difficulties. In 
order to overcome them, by following the approach in [9], 
the singularity can be treated by means of the principal 
volume method, so that one achieves: 
 

𝑰 +
∆𝑘C

𝑘EC
𝑳 ∙ 𝑬 𝒓, 𝒌𝒕 = 𝑬𝒊 𝒓, 𝒌𝒕  

											+𝑃. 𝑉. 𝑮 𝒓, 𝒓′ ∆𝑘C ∙ 𝑬 𝒓7, 𝒌𝒕 𝑑𝒓′
9

 
(9) 

where 𝑃. 𝑉. 9  stands for a shape dependent principal 
value integral and 𝑳 is a dyad depending on the shape of 
the considered volume. 
In a more compact form, the state equation for the SPF 
model reads: 
 
𝑭 𝒓, 𝒌𝒕 = 𝑬𝒊 𝒓, 𝒌𝒕  

+𝑃. 𝑉. 𝑮 𝒓, 𝒓7 𝑰𝑞(𝒓7) ∙ 𝑭 𝒓7, 𝒌𝒕 𝑑𝒓′
9

 

= 𝑬𝒊 𝒓, 𝒌𝒕 + 𝐴#klm 𝑰𝑞(𝒓7) ∙ 𝑭 𝒓7, 𝒌𝒕  

(10) 

 
wherein 𝑰𝑞 𝒓 = 𝒒 𝒓 = ∆𝑘C 𝑰 + 𝜒𝑳

;Q
, 𝑭 𝒓, 𝒌𝒕 =

𝑰 + 𝜒𝑳 ∙ 𝑬 𝒓, 𝒌𝒕 . 
By following the same steps of the previous Section, the 
SPF series is defined as: 

𝑭 𝒓, 𝒌𝒕 = 𝐴#klm 𝑰𝑞(𝒓)
U

VW

UXB

∙ 𝑬𝒊 𝒓, 𝒌𝒕  (11) 

which is valid for 𝐴#klm 𝑰𝑞(𝒓) < 1. 
The SPFA is derived by considering the first term in (11) 
as the dominant one, so that: 

𝑭 𝒓, 𝒌𝒕 = 𝑬𝒊 𝒓, 𝒌𝒕  (12) 

and by substituting expression (12) into the data equation: 

𝑬𝒔 𝒌𝒐, 𝒌𝒕 = 𝐴[ 𝑰𝑞 𝒓 ∙ 𝑭 𝒓, 𝒌𝒕
= 𝐴[ 𝑰𝑞 𝒓 ∙ 𝑬𝒊 𝒓, 𝒌𝒕  (13) 

it becomes linear in the auxiliary unknown function 𝑞 𝒓 . 
 
4. Spectral analysis for CS-EBA and SPFA 
 
For the sake of brevity, a unique analysis is derived for 
the CS-EBA and SPFA, and for this latter one component 
of the electric field is considered for simplicity. 
Let us consider to deal with far field observations. In this 
case, the data equation in the integral form reads: 

𝐸Y 𝒌𝒐, 𝒌𝒕 = 𝐶 𝜂(𝒓7)𝑒;< 𝒌𝒕;𝒌𝒐 ∙𝒓r𝑑𝒓′
9

 (14) 



in which 𝐶 is a constant value arising from the asymptotic 
expansion for the radiation operator and 𝜂(𝒓) is a generic 
unknown function (i.e., 𝑝 𝒓  or 𝑞 𝒓  in the two cases 
above). 
Let us also evaluate the Fourier transform of 𝜂(𝒓): 

ℱ 𝜂(𝒓) = 𝜂 𝑲 = 𝐶 𝜂(𝒓7)𝑒;<𝑲∙𝒓r𝑑𝒓′
9

 (15). 

By comparing eqs.(14)-(15) and by referring to a number 
of experiments 𝒌𝒕, one immediately gets that 𝐸Y 𝒌𝒐, 𝒌𝒕 =
𝜂 𝒌𝒕 − 𝒌𝒐 , namely the scattered field can be considered 
the restriction of the Fourier transform of 𝜂 𝒓  to the 
circle with radius 2 𝒌𝒐 = 2𝑘E , the so-called Ewald 
sphere. A pictorial representation of such a spectral 
coverage is shown in fig.1(a).  
It is worth to note that such a result is an extension of the 
yet developed arguments for the BA [5] to generic linear 
approximations. Therefore, such a spectral analysis could 
be useful in different scenarios by firstly looking at the 
unknown 𝜂(𝒓) and then going back to the actual unknown 
𝜒 𝒓 . 
Notably, the spectral coverage clearly indicates which 
kind of profiles can be safely reconstructed, and hence 
which of them are instead expected to be “invisible”. As a 
matter of fact, it has been derived that the scattered field is 
related to the spatial Fourier transform of the auxiliary 
unknown function involved in the approximation at hand, 
over the surface of a single Ewald sphere. Interestingly, 
such a circumstance can be conveniently used in case of 
invisibility problems, namely when the goal of cancelling 
out the scattered field from an object is pursued. As a 
consequence, the graphical representation of fig.1(a) can 
be renewed as in fig.1(b): if the spectral content of the 
actual unknown is null inside the Ewald sphere, the 
arising scattering field will be null as well. 
As it can be noted, it is possible (at least in principle) to 
synthesize a cover by looking at scatterers whose spectral 
content is outside the Ewald sphere. Obviously, care must 
be taken with the range of validity of the considered 
approximations. 
 

 
4. Preliminary assessment 
 
By taking advantage from the simple arguments proposed 
in the previous Section, a first preliminary assessment is 
performed by pursuing the invisibility of an object in the 
BA. Hence, 𝜂 𝒓 = 𝜒 𝒓  and 𝜂 𝑲 = 𝜒 𝑲 . 
Let 𝜒B be the contrast function of the lossless object to be 
hidden (with support ΣB ) and ∆𝜒  the contrast function 
pertaining to the unknown cover (with support Σ), so that 
the overall scattering system is characterized by 𝜒 = 𝜒B +
∆𝜒, see fig.3(a). A simple approach to reach invisibility 
deals with the exploitation of the “alternate projections” 
method [10] relying on the iterative projection of the 
unknown function 𝜒 ∈ ℝC  into the Fourier domain in 
which all the components belonging to the circle of radius 
2𝑘E are forced to be zero, see fig.2. 

The considered object exhibits a varying contrast function 
from 0.3 to 0 and radius 0.12𝜆, 𝜆 being the wavelength in 
the free space, see fig.3(a). The investigation domain Ω is 
a square with side 1.5𝜆, while the radius of the circular 
region Σ  is equal to 0.6𝜆 . For the starting point of the 
iterative procedure ∆𝜒 = 0.1. 
The outcome of the alternate projections after 20 
iterations is shown in fig.3(b). As it can be seen, starting 
from the initial case in fig.3(c), the alternate projections 
iteratively get out the dominant Fourier harmonics of the 
circle of radius 2𝑘E , see fig.3(d). In addition, the field 
scattered from the so-obtained cloaking system is reduced 
with respect to the bare case, see figs.3(e)-(f). 

      
                 (a)                                      (b) 

Figure 1. Spectral coverages for linear 
approximations. (a) “Visibility” and (b) 
“invisibility” condition. 

 
Figure 2. Schematic representation of the “alternate 
projections” synthesis approach. 



 

6. Conclusion 
 
In this contribution, the synthesis of invisibility cloaks by 
exploiting a Fourier based analysis in the inverse 
scattering framework has been proposed. In particular, a 
spectral analysis has been derived for linear approximated 
solution approaches, such as the Contrast Source 
Extended Born and the Strong Permittivity Fluctuation 
approximations. Then, the arising relationships between 
the scattered field and the unknown function encoding the 
electromagnetic properties of the object have been 
conveniently exploited for the design of invisible systems.  
The proposed synthesis method has been assessed within 
the Born approximation; however, it is quite simple and 
general, so that it can be conveniently extended to a 
number of linear models. 
 
Further numerical examples concerning other 
approximated strategies, as well as different kinds of 
configuration (see [11,12]) will be shown at the 
Conference. 
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                    (a)                                          (b) 

  
                    (c)                                          (d) 

  
                    (e)                                          (f) 

Figure 3. Numerical example for spectral invisibility. 
Contrast function of the (a) bare and (b) covered object. 
Fourier transform of the (c) bare (𝜒zB) and (d) covered (𝜒{) 
object; the white contour line represents the Ewald sphere 
with radius 2𝑘E . Scattered field from the (e) bare and (f) 
covered system with superimposed the contour line of the 
object. 


