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Abstract

The rapid development and implementation of wire-
less communication standards put increasing pressure on
spectrum allocation and therefore threatens the efficacy of
radio astronomy. For example, digital audio broadcasting
(DAB) is a wide-bandwidth broadcast technology that is
now being implemented and has spectrum allocated in the L
band. We demonstrate that standard narrowband subspace
subtraction methods may provide insufficient suppression
of such signals. We therefore propose two algorithms that
take into account the non-narrowband nature of these sig-
nals. The first proposed algorithm is based on a flat fre-
quency response model and the second is a Taylor expan-
sion approximation of the first. An experimental demon-
stration of both proposed algorithms yielded an increase
of approximately a factor two in bandwidth per channel
that can be processed when compared to conventional nar-
rowband techniques (for the same attenuation of the RFI
signal). The performance of the two methods is identi-
cal for LOFAR station configurations with bandwidths be-
tween 763 Hz and 195 kHz, however the Taylor expansion
approximation based algorithm requires less operations (a
speed-up of 1.3 was achieved).

1 Introduction

In the development of radio frequency interference (RFI)
mitigation methods, the assumption that the RFI is narrow-
band, is usually made. If this is the case, spatial RFI mi-
tigation methods such as orthogonal projection, orthogonal
projection with subspace bias correction, oblique projection
and subspace subtraction [1, 2] can be applied. When the
signal is not narrowband, the model for the array response
vector becomes a function of bandwidth. The result is that
the RFI will appear as an extended source that can be mo-
delled as multiple sources, albeit with rapidly decreasing
power. Using a flat frequency response model and Zatman’s
approximation [3] of that model, we present new subspace
subtraction algorithms. To evaluate the proposed RFI mi-
tigation methods, the layout of High Band Antenna (HBA)
station RS407 in the Low Frequency Array (LOFAR) [4] is
used. The HBA stations in LOFAR have an operating band
from 110-250 MHz, which contains many digital audio bro-
adcasts (DABs).

2 Notation

A Bold upper-case letters are matrices.
The jk™ element is indicated by A j;.
a Bold lower-case letters are column vectors.

The j element is indicated by a;.
|- Absolute value of a scalar.

Tr(+) Trace of a matrix.

diag(-) Converts a vector into a diagonal matrix.

i Square root of -1.

c Speed of light.

{1 Hermitian transpose of a matrix.

{17 Transpose of a matrix.

{-}* Complex conjugate of a scalar.

sinc(x) = sin(zwx)/(7x), normalised sinc function.

3 Narrowband Signal Model

If omnidirectional antennas are used, then the normalised
array response vector for an array with N, elements and
a continuous wave source with frequency Vv is given by
a=[ge VT ... gy e 2TVIN] " If the source lies in the
far-field, then 7; = —(lx; +mgy, +n5z,)/c, gj = 1/v/Ne
and x;,y;,z; are the Cartesian coordinates of the 7" antenna
and [, my, ng are directional cosines. The array covari-
ance matrix for a single source without noise is given by
R = c2aal where

Rj, = gjgrole 27U, (1)

where o7 is the signal power, R jk is the jk' element in the
covariance matrix and Tj; = T; — T.

4 Non-Narrowband Signal Model

If the channel bandwidth is not sufficiently narrow, the de-
pendence of the array response vector on frequency beco-
mes significant. The frequency dependent covariance ma-
trix R(v) with only a single interferer (no noise or cosmic
sources), that is modelled as a point source, can be written
as R(v) = 62(v)a(v)al (v), where a(v) is the normalised
frequency dependent array response vector. When the diffe-
rent frequency components are uncorrelated, the total cova-
riance matrix is found by integrating over the entire band-
Vo+AV/2 o

width R = L Vo av/2 O (v)a(v)af (v)dv, where Av is



the bandwidth and vy is the centre frequency. For a flat fre-
quency response, the above integral can be calculated and
the jk'" element is given by

Rj = ()'Szgjgk sinc(frjkAv)e_iszkvo. 2)

By taking the bandwidth into consideration (and assuming
a flat frequency response) this covariance matrix model dif-
fers from the narrowband model (see equation (1)) with
a sinc function that is dependent on the delay 7 and the
bandwidth Av. As the bandwidth increases, from a single
frequency, the sinc function starts to decrease from unity
and the effect is that the covariances start to decorrelate.
This causes the eigenvalue structure of the array covariance
matrix to change. For a single frequency signal there will
only be one non-zero eigenvalue. For a non-zero bandwidth
signal the covariance matrix will be of full rank, since it is
an infinite sum of frequencies. As the bandwidth increases,
the largest eigenvalue will decrease and the other eigenva-
lues will increase. However, most of the eigenvalues will
be so small relative to the cosmic sources and the noise in
the system, that they can be approximated by zero. The ef-
fective rank of the RFI covariance matrix (no noise or cos-
mic sources) is then defined to be equal to the number of
eigenvalues that are significant when compared to the ei-
genvalues of the covariance matrix that contains only the
cosmic sources and noise.

5 Approximation of RFI Eigenvalues

If a covariance matrix has an effective rank of two, it can
be approximated by the sum of two discrete uncorrelated
signals

R ~ clajall + clasall. 3)

The closed form solution for the eigenvalues of the system
given in equation (3) are [2, p. 65]

2 2 Ho |2
2, .2 6705 (1 —|ajay[?)
o] + O 1+4/1—-4 .
(o 2)( \/ (67 + 02 )2
)

In the model proposed by Zatman the signals are required
to have equal power (612 = 022 = 62) [3]. The equal power
criterion is achieved when the discrete sources are arranged
in such a way that the instantaneous frequency spectrum
mean and variance correspond to the mean and variance of
the non-zero bandwidth signal, respectively. Consequently,

the distance from the centre frequency vy is given by Kk =

Aip=

N =

%. Thus, the model in equation (3) becomes
R ~ c%a(vy + k)a (vo + k) 4+ o%a(vy — k)a’ (vg — k)
= o’(aia] +aal). )

Zatman’s approach is now generalised from a uniform li-
near array to an array of any shape using the normalised re-
sponse vector and the assumption that 67 = o5 = 2. Con-
sequently, equation (4) simplifies to

Mo =o’[L £y, (6)

H

where Y = aj' a;.

6 Appropriate Bandwidth for Spatial Filte-
ring

Spatial nulling techniques work by modifying eigenvalues
in the measured covariance matrix that are associated with
the RFI subspace. For example, orthogonal projection ma-
kes those eigenvalues zero. As the number of eigenva-
lues that are modified increases so does the loss in infor-
mation [1]. Therefore, the lowest order filter that suffi-
ciently suppresses the RFI is desired. This criterion can be
met by setting the channel bandwidth so that the second
eigenvalue lies sufficiently below the noise floor A, <<

2
GI% (1 + \/Ne/Nt) , where N; is the number of samples

used to estimate the array covariance matrix [1]. Increa-
sing the bandwidth so that the second eigenvalue is above
the noise and then using second order spatial filtering will
not sufficiently remove the RFI. The reason is that the third
eigenvalue will then have a significant impact, because no
array is perfectly calibrated and the frequency response is
not completely flat, which causes the third eigenvalue to be
substantially higher than predicted by the model. To incre-
ase the bandwidth that can be processed or the RFI suppres-
sion, the algorithms that are proposed in section 8 construct
a second order filter that does not require the second eigen-
value to be above the noise.

7 Approximating RFI Vector Space

The RFI covariance matrix in equation (5) can be rewritten
in terms of its cigenvalue decomposition R ~ Gz(ala’[’ +
axall) = A, v vl + AovovE | which maximises the power in
the direction of vy, with the remaining power contained in
the direction of v,. Both vectors are linear combinations of
a; and ay,

vi2 = Bioar + Yo, 7

H H

with the following properties: v{'vi = v; vy = 1 and
H

vilvy = vilv; = 0. Using the definition of an eigenvector
and eigenvalue

Rv ~ ¢ (ajall +ayal!)(Ba; + yay)
= o’ (Ba; +yya; + By ay +yay)
=Av=ABa; + Aya,.
Comparing the components of a; and ap, respectively,
yields
AB=o*(B+rv), @®)
Ay=o*(By +7). )

Substituting A = 412 = 6>(1 £ |y|), B =Piaand y =¥
into equations (8) and (9) yields

N2y

g = +2E (10)
Pra=+7y
Brav*

=2 (11)
M2 =5y

Bial* = |nal” (12)



Using the property that v is a unit vector gives
viv=1=(B"a] +7a))(Bas + ya)
=BP+B YWy By YR (13)
and substituting equations (11) and (12) yields

2 1

1B12 ET7) (14)
The phase of either B or ¥ can be arbitrarily chosen (see
equations (10) to (13)). There is also no phase relati-
onship between f1,7 and 3,7 as can be scen by ex-
panding V{i vy = 0. The phase of B, is fixed to 0 and
thus B1 2 =1/4/2(1 £|y|). Substituting equation (11) into
equation (7) yields

W*
- |a+ L, 15
2051 [a‘ leaz} ()

A ]

V) = ———— |a] — —az|. (16)
2(1—1y) vl

To construct v, from equation (16) the direction of arrival
of the RFI (this can be obtained by using algorithms such as
MUSIC and ESPRIT) as well as the signal bandwidth are
required.

8 Proposed RFI Mitigation Algorithms

Two new spatial RFI mitigation algorithms based on sub-
space subtraction are presented in this section. These al-
gorithms are designed for wideband RFI that is stationary,
such as DAB broadcasts. The channel bandwidth should be
selected so thgt the second eigenvalue, of the sample covari-
ance matrix R, is lower or equal to the power of the cosmic
sources being observed. The first algorithm is based on the
flat frequency response model (see equation (2)) and the
other on Zatman’s approximation to that model (see equa-
tion (16)). The following preprocessing steps are required:

 Use the power iteration method on R to find the largest
eigenvalue 51 with the accompanying eigenvector vy.

¢ Obtain the location of the RFI source. For example,
the location of DAB towers can be easily obtained and
used as the initial guess for a fast iterative algorithm
such as Minimum Error Convergence [5]. If no ini-
tial guess can be made, algorithms such as MUSIC or
ESPRIT can be used.

» Estimates for the two largest eigenvalues of the RFI
only covariance matrix can be obtained by using the
estimated location of the RFI and equation (6)

~

—~ Tr(R) —
Aoy =51 — % 17
>~ 1|y
M_M<1+|u7l>' (18)

Use these two new eigenvalue estimates to create the
matrix Sy = diag([Ar,1,Ar2]7).

Algorithm 1: Flat frequency response model based algo-
rithm (FF algorithm)

¢ Calculate the normalised flat frequency covariance
matrix model of the RFI source Rg, using equation (2).
Note that this model covariance matrix does not in-
clude any noise and that 62 = 1.

¢ Use the power iteration method on Ry to find the se-
cond largest eigenvalue’s eigenvector Vo s.

e Apply subspace subtraction to obtain the flat fre-
quency model based RFI mitigated covariance matrix

Runs = R—[V1,%24]S:[¥1, 924" (19)

Algorithm 2: Zatman’s approximation based algorithm
(ZA algorithm)

* Calculate the normalised Zatman’s approximation ba-
sed model eigenvector v, , using equation (16).

» Apply subspace subtraction to obtain the Zatman mo-
del based RFI mitigated covariance matrix

~

l/im,z =R- [?la?Z,Z]S\IWIa/‘;lz]H- (20)

9 Evaluation of RFI Mitigation Algorithms

To evaluate the performance of both proposed algorithms,
an estimated covariance matrix was created by adding an
estimated noise and cosmic source covariance matrix Ryc
to an estimated RFI covariance matrix R;. The matrix Ry
was obtained from a real observation done with LOFAR
HBA station RS407 where there is no RFI present. A soft-
ware defined radio was used to record a DAB signal which
has a reasonably flat frequency spectrum. Finite impulse
response filters were used to produce 70 signals with band-
widths ranging from 763 Hz to 195 kHz (typical values
for LOFAR). Each filtered signal was upsampled and fre-
quency shifted to 145 MHz (the same centre frequency as
R;¢). Covariance matrices were created for each of the 70
processed signals by adding an appropriate delay for each
antenna and correlated. To measure the performance of the
proposed algorithms, the Frobenius norm of the difference
between the recovered covariance matrix Ry, and matrix
Ry is used

Ne Ne

EEND )

j=1k—1

~ ~ 2
RHC(jvk)_Rm(jvk) (21)

In figure 1 a plot is given of the Frobenius norm as a
function of fractional bandwidth. The difference in perfor-
mance of the FF and the ZA algorithms is less than 1013
and both are represented by the proposed 2nd order line.
The 1st order line is the performance achieved by using sin-
gle frequency subspace subtraction. Close to zero fractio-
nal bandwidth, the performance of the 1st order method and
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Figure 1. Frobenius norm of the difference between the
recovered matrices using RFI mitigation methods and the
noise and cosmic source covariance matrix as a function of
fractional bandwidth.

N
o
o

* Bandwidth Requirement
— Linear Regression

N
a
o

2nd Order Method Bandwith (kHz)
)
o

50 ; ; ; ; ;
20 30 40 50 60 70 80

1st Order Method Bandwidth (kHz)
Figure 2. A plot of the bandwidth of the 2nd order methods
as a function of the bandwith of the 1st order method to
achieve the same attenuation.

that of the 2nd order methods are the same. As the band-
width increases so does the Frobenius norm for the 1st order
method, since the second eigenvalue becomes significant,
however the FN for the 2nd order methods shows very little
increase. The minimum achievable FN is jAust under 0.2
and is due to the estimation errors in Vi and A, ;. Channels
with larger bandwidth can be processed using the 2nd order
methods, while achieving the same level of mitigation as
the 1st order method which requires channels with smaller
bandwidth. This is shown in figure 2 where the bandwidth
required by the second order methods is given as a function
of the bandwidth of the first order method. Using a fitted
straight line indicates an increase by approximately a factor
two in bandwidth that can be processed.

The FF algorithm and the ZA algorithm have the same
performance for the bandwidths selected. Both algorithms
have computational complexity ¢’(NZ) (which includes the
preprocessing step making use of the Minimum Error Con-
vergence algorithm). However, the FF algorithm requires
an additional calculation of an eigenvector and the com-
putational complexity of the FF algorithm’s equation (2)
is O(N2) compared to the ZA algorithm’s equation (16)
which has computational complexity &'(N,). The ZA al-
gorithm achieved a median speed-up of 1.3 in a simulation
varying the number of antennas from 5 to 200.

10 Conclusion

Strong wideband RFI cannot be modelled as a single point
source, but rather as an infinite sum of sources that rapidly
decrease in power. For traditional spatial filtering to work
on powerful wideband RFI, it must be filtered into sub-
bands which are sufficiently narrow so that for each sub-
band, the RFI source is a single point source. This greatly
increases the computational cost. To reduce this cost, the
FF and ZA algorithms are presented that combine a wi-
deband signal model with a subspace subtraction method
and, in so doing, decreases the number of sub-bands that
must be processed. The proposed algorithms are able to
process approximately twice more bandwidth than conven-
tional spatial filtering methods. For bandwidths between
763 Hz and 195 kHz and a LOFAR HBA station layout, the
performance of the proposed methods is similar. However,
the ZA algorithm showed a speed-up of 1.3 relative to the
FF algorithm.
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