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Abstract

The four-quadrant monopulse array is widely used for di-
rection of arrival (DOA) estimation. Errors in the angle
estimate are introduced when installing the array on a plat-
form, due to unwanted reflections in the platform, as well
as reflection and refraction in the radome. These installa-
tion effects are captured in the installed element patterns,
which can be computed using a number of computational
electromagnetics methods. In this paper, we demonstrate
that the error introduced in the DOA estimate can be de-
termined from the installed element patterns. To illustrate
how the method is used, we present results for two cases:
(a) BoR-array without radome and (b) BoR-array with an
extended hemispherical radome. The presented method can
be applied for any installation configuration, as long as the
installed element patterns can be computed.

1 Introduction

Several remote sensing systems require the capability to de-
termine the direction to a radiation source. This is referred
to as direction of arrival (DOA) estimation. The monopulse
method [1, 2] enables accurate DOA estimation using the
classical four-quadrant array configuration, as illustrated in
Figure 1. The radiation source of interest can be a transmit-
ter, or radiating currents on a target due to illumination by
a radar. Hence, the monopulse method is commonly used
both in active systems, which consist of both a transmitter
and a receiver (e.g. radar), and passive systems which con-
sists only of a receiver (e.g. electronic support measures).
The monopulse method is also relatively robust against both
unintentional and intentional interference (jamming), see

e.g. [3].

To estimate system performance for a four-quadrant
monopulse array installed on a platform (such as an aircraft,
satellite or automotive vehicle), one needs to take installa-
tion effects into account. The most important installation
effects are (I) reflections in the platform, which cause mul-
tipath errors and “ripple” in the antenna far-fields, and (II)
reflections and refraction in the radome. Some attention
has previously been given to radome-induced pointing er-
ror [4], as well as increased side-lobe levels due to radome
installation [5].
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Figure 1. (a) Illustration of array aperture of dimensions
w X h divided into four sub-arrays of dimensions w/2 x /2.
The sub-array numbering is shown. (b) BoR-array antenna
divided into corresponding sub-arrays.

Computing the installed antenna pattern for an antenna in-
stalled on a platform is a computationally heavy problem
due to the large size of the structure in terms of wavelengths
[6, 7]. With modern hardware and advanced computational
methods such as [8], it is now possible to compute the in-
stalled antenna patterns even for very large platforms at gi-
gahertz frequencies. The computed installed antenna pat-
terns can be used to determine system performance in terms
of angular coverage, side-lobe level and cross-polarization.
It has recently been shown that the installed antenna pat-
terns also can be used to estimate the isolation between an-
tennas installed on the same platform [7]. In this paper,
we show that the installed antenna patterns can be used to
determine the installation effects on the accuracy of a four-
quadrant monopulse system.

The paper is organized as follows. The method for deter-
mining the installation error is presented in Section 2. Sec-
tion 3 presents results for two cases: (a) BoR-array without
radome and (b) BoR-array with an extended hemispherical
radome. Finally conclusions are presented in Section 4.

2 Theory

We start with a brief review of the background theory [1] of
monopulse DOA estimation with four-quadrant array an-
tennas in Section 2.1. The purpose of this is to show which
errors occur in the estimation. We introduce an error term
€ to model these errors. Based on this, a method to de-
termine installation errors is presented in Section 2.2. The



presented method uses the installed element patterns (IEPs)
to determine the installation errors.

2.1 Four-quadrant monopulse arrays

We are interested in estimating 7 = u(6,¢9)2+v(0,9)9 +
cos(0)2, which is the direction to the radiation source with
respect to the system of coordinates in Figure 1. Let
s1, s2, s3 and s4 be the signals received simultaneously by
the sub-arrays with the corresponding index. The sum s,
elevation difference d, and azimuth difference d, are de-
fined as s = 51 +52 + 53+ 54, do = 51+ 52 — 53 — 54 and
d, = 51 —sp + 53 — s4. The measured elevation difference
signal due to an incident plane wave, with amplitude a and
unit polarization i, is determined by

de(#) = an - [C1J1 (7)1 00 4 €y 1) (7l =)
_ C3]?3(V) (F)el¥rs(i=ho) _ C3ﬁ§v) (f)ejk74'(f*;0)i| 7
(1)

where ]_‘;-(V) is the vector far-field amplitude of sub-array i
and k = 2mw/A. A progressive phase or time delay distri-
bution over the array aperture is assumed to steer the main
lobe in the sum pattern in the direction 7o = upX + voy +
cos(8p)Z. Eqn. (1) is valid when the far-field amplitudes are
normalized following [7]. The frequency-dependent coeffi-
cients C; describe the receiving properties such as loss, low-
noise amplification and mismatch. The monopulse receiver
should be carefully designed such that these coefficients are
equal, i.e. C; =~ C. Furthermore, we require the sub-arrays
to be equal, i.e. of equal size and tapering. We can therefore
introduce the following notation:

Cai- f)(7) = F(7) +&(#), @)

where we have introduced the error term &(#). This error
term includes the following effects:

(i) The sub-array far-field amplitudes f;(v) are not ex-
actly equal, since they are subject to different edge-effects.
Furthermore, it is usually of interest to taper the sub-arrays
differently in order to suppress the side-lobe level, see e.g.
[5].

(ii) The far-field amplitudes f;m can also include instal-
lation effects, e.g. reflection and refraction in the radome,
and reflections in platform.

(iii) There can be some non-ideal performance of the
array feed network, whereby there is some error in the ap-
proximation C; =~ C.

The method presented in Section 2.2 can be used to study
the effects of (i) and (ii).

The classical derivation for DOA estimation below assumes
the idealized case €(#) = 0. Assume that the phase-center
of each sub-array is located in the geometrical center of
the corresponding sub-array, i.e. 7| = —wX/4+hy/4, ¥, =

Case (a) Case (b)

Figure 2. Illustration of the two investigated cases: (a)
BoR-array in free space and (b) BoR-array installed behind
radome. Half of the radome is hidden to show the array
beneath.

wi/4+h)/4, 73 = —wi/4 — h9/4 and 74y = wi/4 — h/4.
Using Euler’s formula, it is now possible to simplify (1):

() = 4 £ (7) cos(kw(u — ug) /4) sin(kh(v — o) /4). (3)

The azimuth difference d, and sum s signals are found by
analogy:

dg(7) = —4jf(7)sin(kw(u —up)/4) cos(kh(v —vo)/4) (4)

s(7) =41 () cos(kw(u—ug)/4)cos(kh(v—v9)/4). (5)

The array factors are found from (3)-(5) by omitting the fac-
tor f(#). Note that the difference patterns are odd, with a
null in the direction of the main lobe of the sum pattern, i.e.
when (u, v) = (ug, vo). The difference array factors have
two major lobes, located on opposite sides of this null, with
opposite phase. Eqns. (3) and (4) are useful when consider-
ing the antenna’s installation location on a platform, since it
is desirable to avoid illuminating the platform or the ground
with the difference lobes, since this results in sensitivity to
unwanted reflections. As understood from (3)-(4), this is
more difficult at lower frequencies, since the angular sepa-
ration between the difference lobes grows with decreasing
frequency.

By dividing (3) and (4) by (5), we have the following rela-
tions! between the monopulse ratios and the DOA (u, v):

d. .
- = jtan(k,(v — o)) (6)

d, .
" = —jtan(k,(u—up)). 7

The advantage of this normalization is that the monopulse
ratios are independent of f (7). However, one should keep
in mind that this only holds for the idealized case € = 0.
The monopulse slope coefficients are given by k, = kh/4
and K, = kw/4 for the case of equal sub-arrays. When

A similar relation is found in [1].
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Figure 3. Estimated angle of arrival 8, extracted from sim-
ulation data, plotted versus angle of arrival 6. Simulated
far-fields for case (a) were used.
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Figure 4. Estimation error in polar angle |6 — 6|, computed
in the elevation plane (¢ = 90°) at 20 GHz. The scan angle
is set to By = 30° in the elevation plane. Both cases (a) and
(b) are presented.

tapering is applied in a way where the sub-arrays are not
equal, (6)-(7) can still be applied approximately by replac-
ing the monopulse slope coefficients k, and k, by their cor-
responding tapered values. By tapering the array excitation,
the beamwidth is increased and the monopulse slope coef-
ficients are therefore decreased, see e.g. [5].

In conclusion, the unknowns u and v can be directly de-
termined from the measured monopulse ratios by inverting
(6)-(7). Thereafter, 0, ¢ and 7 can be calculated. In prin-
ciple, this enables the DOA to be estimated from a single
measurement, hence the name monopulse. It is common
to linearize (6)-(7) under the assumption that |v — vy| and
|u — up| are small. Since (6)-(7) are periodic, the estimate
of u and v is ambiguous outside the unambiguous region:

wz>{@“‘w' ®)

Kg|u — uo).

In practice, a guard antenna is therefore needed to verify
that the measured signal was received within the unambigu-
ous region and not in the side-lobes, see e.g. [9].

2.2 Determining installation errors

To determine the installation error, we will use the installed
antenna patterns, which are known from simulation or mea-
surement. The installed elevation differencec pattern, az-
imuth difference pattern and sum pattern are denoted by
c?;,,m,, cz”m,, and sj,i. The monopulse ratios that would
be measured for an incident plane wave of unit polarization
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Figure 5. Elevation estimation error |v — 7| at 20 GHz
for (a) BoR-array without radome and (b) BoR-array with
radome. The scan direction (ug, vo) is marked by +. The
axis limits are set by (8). Regions of radome-induced point-
ing error are indicated by red circles and arrows.

71 can be determined as:

—

i-d,;
(de/s)inst = ﬁ;ﬁ:[ 9)
- _;z.ins
%MMZKEj (10)

By inserting (9)-(10) into (6)-(7), we can estimate the DOA
for a known direction (u#, v). The estimated DOA (i, V)
will then include the errors (i)-(ii) described in the previous
section, since these errors are captured by the installed far-
fields. The installation error can thereafter be evaluated as:

elevation error = v— 7 (11)

azimuth error = u — i. (12)

This can be repeated for a set of directions (u, v), scan di-
rections (ug, vo), polarization 71 and frequencies. By analyz-
ing the data given by (11)-(12) for these parameter sweeps,
we can determine the installed performance of the four-
quadrant monopulse array.

3 Results

We present simulation results for a wideband BoR-array
antenna of dimensions w = 50 mm and & = 43 mm, de-
signed for 5 — 24 GHz. The BoR-array (Figure 1(b)) con-
sists of 8 x 6 elements of vertical (y) polarization. The array



is installed behind a radome with an extended hemispheri-
cal shape of diameter 90 mm and extension 34 mm, made
from quartz (¢, = 3.2,tan 6 = 0.006) of thickness 7.5 mm.
The active element patterns (AEPs) for the BoR-array were
computed using the finite integration technique (FIT) im-
plemented in CST Microwave Studio. We consider two
cases: (a) the BoR-array in free space and (b) the BoR-array
installed behind the radome. The two cases are illustrated in
Figure 2. The AEPs for case (b) are referred to as installed
element patterns (IEPs). A post-processing script imple-
mented in Matlab was used to compute the sum and differ-
ence far-fields. The errors were thereafter computed using
(11)-(12) for both case (a) and case (b). Any combination
of frequency, tapering, incident polarization and scan di-
rection can be studied efficiently using this post-processing
method. Some representative results are presented below.

As a first example, we estimate the polar angle 6 for a set
of angles 6 in the elevation plane ¢ = 90°, for various fre-
quencies and scan angles 6y. The results for case (a) are
shown in Figure 3. As expected, the relation between 6 and
0 collapses on a straight line with unity slope. The bound-
aries of the unambiguous region are visible in the figure.
Any deviation from this straight line is due to non-ideal an-
tenna far-fields, as described by (i)-(ii) in Section 2.1. Since
the radome is not considered for case (a), the minor devi-
ation seen here is due to (i) and not (ii). Figure 4 shows
the estimation error in polar angle, i.e. |6 — 8| for both
cases (a) and (b). This figure shows that the radome in-
creases the error in the angle estimate in a region between
31° < 6 < 53°, where a maximum error of 2° occurs. For
most applications, this radome-induced error is sufficiently
small. To identify if there are directions where a signifi-
cant error occurs, it is convenient to use contour plots, as
described below.

Figure 5 shows contour plots of the elevation estimation er-
ror, as determined by (11), for both case (a) and case (b)
within the unambiguous region. These plots correspond to
20 GHz and the scan direction 6y = 30°, ¢9 = 0°. Com-
paring Figures 5(a) and 5(b), we note that there are some
regions of radome-induced pointing error, as indicated by
the red circles and arrows. The radome-induced error is be-
low 0.05, which is sufficiently small for most applications.
The size of these regions, as well as the magnitude of the
pointing error, depends on the installation configuration and
will be more significant for low-quality radomes. Note that
the estimation error is usually smaller when the target is lo-
cated close to the scan direction, i.e. centered in the main
lobe of the sum pattern.

4 Conclusions

This paper presents a general method to determine instal-
lation errors on the monopulse DOA estimation for four-
quadrant monopulse arrays. By using the IEPs, we compute
the installation errors according to (11)-(12). By analyzing
the data generated using this method, the effective cover-

age for an antenna can be determined with respect to the
installation configuration. Regions with poor DOA estima-
tion accuracy can then be identified, and related to causes
such as reflections in the radome or the platform. Repre-
sentative results were presented for two investigated cases.
The presented method is general and can be used for any
installation configuration on a platform, as long as the cor-
responding IEPs can be computed.
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