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Abstract

Next generation wireless networks are expected to oper-
ate in licensed, shared as well as unlicensed spectrum. To
enable this, central controller or base stations need wide-
band spectrum sensing (WSS) to periodically identify po-
tential spectrum resources and allocate them to the desired
users. The main challenge in WSS is the requirement of
prohibitively high sampling rate analog-to-digital convert-
ers (ADC) which are area and power hungry. To overcome
this bottleneck, sub-Nyquist sampling based WSS (SNS-
WSS) techniques have been discussed in the literature. The
SNS-WSS exploits the sparse nature of a wideband spec-
trum and hence, accomplish WSS using low-rate ADCs.
In this paper, we review and compare the advantages and
drawbacks of existing SNS-WSS. We also discuss future
research directions for making SNS-WSS feasible in next
generation wireless networks.

1 Introduction

In order to meet high data rate requirements of futuristic
delay-sensitive multimedia services and support ultra-dense
networks with very high peak rate but relatively lower ex-
pected traffic per user, next-generation networks are envi-
sioned on a revolutionary path of spectrum sharing mech-
anism [1]. They are expected to operate not only in the li-
censed spectrum but also in the shared (2.3 GHz/ 3.5 GHz)
as well as an unlicensed spectrum (2.4 GHz / 5-7 GHz /
57-71 GHz) [2]. Thus, central controller or base stations
need to periodically perform wideband spectrum sensing
(WSS) to identify and allocate the spectrum resources to
users to meet their services and application requirements.
Since base stations are required to communicate to deter-
mine transmission parameters for each user, they need to es-
timate other parameters such as signal-to-noise ratio, mod-
ulation scheme, interference level, protocol in addition to
occupancy status (vacant/busy).

Various spectrum sensing and parameter estimation meth-
ods [3] such as energy detector, cyclostationary detec-
tor, wavelet-based detector, cumulant-based classifiers have
been explored in the literature. However, these methods are
applicable only to the Nyquist sampled narrowband sig-
nals. Since the WSS needs to be performed on the spec-
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trum that ranges from 300 MHz to 30 GHz, the use of tradi-
tional methods will require prohibitively high rate analog-
to-digital converters (ADC) which is computationally ex-
pensive and power inefficient.

In the last decade, various sub-Nyquist sampling (SNS)
based WSS (SNS-WSS) methods have been proposed to
overcome the need for high-speed ADCs. These methods
exploit the sparsity of the wideband spectrum to gener-
ate sub-Nyquist samples via low rate ADCs. These sub-
Nyquist samples are then utilized in various ways to deter-
mine various parameters of the wideband spectrum. In this
paper, we review popular SNS-WSS methods as shown in
Fig. 1 along with their advantages and drawbacks. We also
discuss future research directions to make SNS-WSS meth-
ods feasible in practice.
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2 Sub-Nyquist Sampling Techniques

In this section, we discuss four state of art SNS techniques
mentioned in Fig. 1.

2.1 Random Demodulator (RD)

The RD [4], as shown in Fig. 2, has a pseudo-random se-
quence generator, a mixer, an accumulator and an ADC.
The RD demodulates a multi-tone wideband signal, x(¢) by
mixing it with a pseudo-random sequence of £1 that is gen-
erated at a Nyquist rate of x(¢). The demodulated signal is
now passed through an accumulator and ADC to generate
sub-Nyquist samples at a rate of R Hz. This step corre-
sponds to an integrate and dump operation where the de-
modulated signal is integrated for the duration 1]7 and then



reset to its initial value. Here, integration duration, R is de-
cided such that it is always greater than 2K where K is the
maximum possible number of active tones in x(¢). The ma-
jor limitation of RD is that it is valid only for a multi-tone
signal Since the wideband signals are analog in nature and
hence contains infinite number of tones. RD based digitiza-
tion becomes computationally expensive.
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Figure 2. Block diagram of random demodulator

2.2 Multi-Coset Sampling (MCS)

Unlike RD which generates samples via single low rate
ADC, the MCS [5] uses p synchronized ADCs for the
digitization. MCS uniformly samples a wideband analog
signal, x(f) consisting of maximum K transmissions via
p > 2K parallel ADCs at a rate of ﬁ where p << L, L (as
shown in Fig. 3(b)) is the number of frequency sub-bands
into which a wideband spectrum is divided and 7 is the
Nyquist period of x(z). All p ADCs samples at a distinct
time offset, ¢; € {1,2,..L} Vi = [1, p] w.r.t. initial sample.
As shown in Fig. 3(a), for a given c;, the output of each
ADC is an active coset. By using the Poisson summation
formula, the discrete time Fourier transform (DTFT) of all
active cosets can be represented as

Y(f) = AnesX(f)  Vf€[0,1/LT] (1

where Y(f) represents p x 1 vector containing DTFT of
samples obtained at every ADC as its rows, A,,;sisa p X L
partial Fourier matrix and X(f) is a L x 1 vector consisting
of Fourier transform of L frequency sub-bands as its rows.

MCS follows a straight forward approach to generate low
rate samples, but it suffers from various limitations. First,
due to the requirement of time delays of order pico-second,
it is difficult to achieve synchronization between ADCs.
Second, due to the processing of direct RF signal, it re-
quires high analog bandwidth. To overcome these draw-
backs, MWC and FRI SNS techniques have been explored.

2.3 Modulated Wideband Converter (MWC)

The MWC [6] has p > 2K analog branches where its each
branch follows the architecture of RD, i.e., each branch of
MWC has a pseudo-random sequence generator, a mixer, an
accumulator and an ADC. However, unlike RD, the pseudo-
random sequences (or mixing functions), m;(¢) Vi € [1, p],
of every branch are uncorrelated periodic sequences of time
period = LT. Because of the periodic nature, m;(t) con-
tains harmonics at rate of f, = 1 /LT. Hence, as shown in
Fig. 3(c), the DTFT of mixed demodulated samples gener-
ated at the output of MWC is a linear combination of /f),

shifted versions of all L frequency sub-bands. Mathemati-
cally, it can be represented as

Y(f) = Amwe X(f), € [~fp/2,+ /2] ()

where Y(f) is a p x 1 vector consisting of the DTFT of
samples obtained at p analog branches, A, isa p X L
sampling matrix and X(f) is vector of Fourier transform
of L frequency sub-bands.
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Figure 3. (a) Samples obtained at MCS for ¢; = {0,2,3},
p=3and L =15 (b) Wideband spectrum divided into L =5
frequency sub-bands (c) DTFT of output at every branch
of MWC (d) DTFT of output at every branch of FRI for
B ={1,2,4,5}

2.4 Finite Rate of Innovation (FRI)

The FRI architecture of SNS [8,9] is similar to the architec-
ture of MWC. But instead of digitizing all L frequency sub-
bands, FRI digitizes a set of desired frequency sub-bands,
B. To perform this, the FRI uses a unique mixing functions,
mi(t) = Yuep Qin e /2Tt at its every analog branch. Due
to this, the DTFT of the samples generated at the output
of every analog branch, as shown in Fig. 3(d), is a linear
combination of shifted copies of all frequency sub-bands
present in 3. Mathematically, it can be represented as

Y(f) = AprX(f) 3)

where Y(f) is a p x 1 vector consisting of the DTFT of
samples obtained at p analog branches, X(f) represents
|B| x 1 vector which contains Fourier transform of  fre-
quency sub-bands and Ay,; is a p X |B| matrix containing
Qi p as its (i,n)" entry.

3 Spectrum Sensing Techniques

The sub-Nyquist samples generated by any of the SNS tech-
niques have been utilized by various spectrum sensing tech-
niques to perform SNS-WSS by estimating transmission
parameters like carrier frequency, bandwidth and modula-
tion scheme. These sensing techniques can be broadly cat-
egorized as 1) sparse recovery of spectrum, 2) feature de-
tection, 3) collaborative sensing and 4) spatial sensing.



Table 1. Comparison of state of art SNS techniques

Pros Cons
RD e Requires single o Not applicable to analog signals
ADC e Contiguous WSS

MCS | e Can work on

analog signals

o Needs accurate time delay of order 10~ '%second
® Requires high analog bandwidth of GHz
o Contiguous WSS

MWC | e Needs smaller
analog bandwidth | e Contiguous WSS

o Needs mixing function of rate in GHz

FRI o Non-contiguous ® Reconstruction might not be possible if a trans-

WSS mission occupies two consecutive sub-bands

3.1 Sparse Recovery Algorithms

Recovery of the spectrum is the simplest way to determine
the location of transmitting bands. Since the wideband sig-
nal X(f) is sparse in Eq. 1, 2 and 3, any sparse recovery
algorithm can be used for its reconstruction. Various com-
pressive sensing algorithms including /-1 minimization al-
gorithms like BP and LASSO [10], greedy algorithms like
orthogonal matching pursuit (OMP) [11] and a Bayesian
approach based algorithms [12] have been studied to re-
cover a sparse signal. The /-1 minimization based algo-
rithms offer better reconstruction accuracy than greedy and
Bayesian algorithms. But /-1 minimization is not feasible
for real-time applications due to high computation time and
complexity. OMP algorithm has low computational com-
plexity, but it requires the prior knowledge of a number
of occupied frequency sub-bands in X(f). Bayesian al-
gorithms offer better reconstruction accuracy than greedy
algorithms like OMP and have lower computational com-
plexity than /-1 minimization based algorithms [13]. But
Bayesian algorithms require the prior knowledge of the
probability distribution of the information signal transmit-
ted on the wideband spectrum.

3.2 Feature Detection

Feature detection based WSS has two major advantages
over sparse recovery algorithms based WSS. First, the
transmitted signals in a wideband spectrum consist of cer-
tain features like modulation scheme, stationary and cyclo-
stationary property. These features have a fewer degree of
freedom than the reconstruction of a sparse signal. Hence,
feature-based WSS is applicable even if the sparsity of sig-
nal is low. Second, features like cyclostationary features
are more robust to noise and hence, can be recovered at low
SNR. SNS based power spectrum [ 14, 15] and cyclostation-
ary feature recovery [16, 17] have been studied for WSS.

Power spectrum based WSS [14, 15] assumes that the trans-
missions in a wideband signal are uncorrelated wide-sense
stationary. With this assumption, the power spectrum of fre-
quency bands can be determined from the sub-Nyquist sam-
ples, Y(f) by taking its autocorrelation i.e. E[Y(f)Y? (f)].
Since the support vector (which contains the status of fre-
quency sub-bands) of a wideband spectrum and its power
spectrum is same, the recovery of the power spectrum
is sufficient for WSS. On the other hand, cyclostationary
based WSS [16,17] takes advantage of the statistical period-
icity of a modulated signal and hence, can have cyclic spec-

trum. By recovering the cyclic spectrum from the shifted
autocorrelation of samples, i.e. E[Y(f)Y?(f+a)], the car-
rier frequencies and their parameters like bandwidth, mod-
ulation scheme and symbol rate can be determined. Fur-
thermore, since stationary noise does not exhibit spectrum
correlation for a # 0, the desired signal can be easily sep-
arated from the noise making cyclostationary WSS more
robust to noise.

3.3 Collaborative Spectrum Sensing (CSS)

The wideband signal received at a user or base station suf-
fers from channel fading, shadowing and path losses. To re-
duce the impact of these channel imperfections on spectrum
sensing, the CSS approach allows the sharing of sensing in-
formation among the users to provide spatial diversity gain.
Based on the sharing method, the CSS can be categorized as
1) Centralized CSS and 2) Distributed CSS. In the central-
ized CSS, all users share the signal’s information collected
by them with a fusion centre which jointly determines the
final support vector. Whereas in distributed CSS, all users
share the signal’s information collected by them with their
neighbouring users and then iterative converge to the final
estimate. As centralized CSS makes decision based on the
information received from all users, it has higher diversity
gain than the distributed CSS. But it has higher power con-
sumption and the possibility of link failure as compared
to distributed CSS. In [18], centralized CSS has been per-
formed where the autocorrelation of sub-Nyquist samples
generated at every user is shared with the fusion centre to
jointly estimate the carrier frequencies. Whereas in [19],
distributed CSS has been exploited where all users make
their local decision on the spectrum occupancy status from
their respective sub-Nyquist samples and then share their
binary decision with neighbouring users to make the final
decision.

4 Joint Spectrum and Spatial Sensing

Using spatial sensing approach, base stations/users estimate
the direction-of-arrival of the occupied spectrum bands.
This not only helps the base station to take well-informed
decisions for resource allocation but also opens up trans-
mission opportunities in the spatial direction.

Multi-coset spatial sensing: Spatial sensing performed in
[21-23] employ MCS in antenna array architecture. In [21],
MCS architecture is used at every antenna of a uniform lin-
ear array (ULA) of antennas. Hence, if there are K num-
ber of antennas, then this architecture requires K.p num-
ber of ADCs for sensing K transmissions. To reduce the
hardware complexity, [22] considers L-shaped antenna ar-
ray where each antenna has a direct branch and a delayed
branch of delay 77 (where 0 < T < 1). Here, the received
wideband signal and its delayed version are sampled at a
low rate of ﬁ and to determine the carrier frequencies and
DOAs, ESPIRIT and MUSIC algorithms are used. As com-
pared to [21], this architecture requires only 2K number of
ADCs. To further reduce the hardware complexity, [23]
uses a uniform rectangular array of M antennas and a de-
layed channel network containing p delayed channels at



one antenna. [23] shows that with this setup, it can deter-
mine up to M(p — 1)/4 carrier frequencies and DOAs.
MWC spatial sensing: The multi-coset spatial sensing ar-
chitectures suffer from the drawbacks of the MCS method
of SNS. To overcome these drawbacks, compressed car-
rier & DOA estimation (CASCADE) method [24] is pro-
posed. This method employs the MWC model which con-
sists of a mixing function followed by LPF and low rate
sampler at every antenna of the L-shaped antenna array.
The joint ESPIRIT algorithm is applied to the sub-Nyquist
samples to perform joint estimation of carrier frequen-
cies and their respective DOAs. However, for K number
of transmissions CASCADE requires minimum 2K anten-
nas/ADCs which is higher than [23].

5 Future Research Directions

In this section, we identify the future research directions
for making SNS-WSS feasible in next generation wireless
networks.

1. Sparse basis: The existing SNS-WSS methods are
applicable only if a wideband signal is sparse in the
frequency domain. But with the deployment of the
cognitive radio network, a wideband spectrum will no
longer remain sparse in the frequency domain. So,
there is a need to explore a new basis in which wide-
band spectrum will be sparse.

2. Adaptive SNS architecture for WSS: The existing SNS-
WSS methods make the assumption on the prior
knowledge of spectrum sparsity [4-6, 11, 12]. Since
the sparsity of the wideband spectrum varies with
time, there is a need for an adaptive SNS-WSS archi-
tecture which can dynamically adapt to sparsity level
of the signal.

3. Deep Learning for WSS: Deep learning approaches
have shown to considerably outperform conventional
machine learning approaches. It would be interesting
to explore deep learning which can automatically re-
construct wideband spectrum from SNS samples.

4. Non-contiguous spatial sensing: The existing spatial
sensing methods [21-24] consider the sensing of en-
tire wideband spectrum. So, if the number of trans-
mitting users exceeds the upper limit of the spatial
sensing model, then the spatial sensing techniques
may not guarantee accurate estimation.Hence, non-
contiguous sensing which offers control over number
and locations of frequency sub-bands need to be ex-
plored. Such an approach also needs online learning
algorithms to choose the frequency sub-bands in order
to guarantee accurate estimation.

5. Hardware prototype: There has not been significant
work which deals with experimental validation of
SNS-WSS techniques in the real radio environment.

Existing prototypes [7] do not consider DOA estima-
tion and non-contiguous sensing. Furthermore, a re-
configurable architecture capable of adapting its pa-
rameters on-the-fly needs to be explored.
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