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Abstract

We consider propagation of surface TE waves in a circu-
lar metal-dielectric waveguide filled with nonlinear (Kerr
nonlinearity) metamaterial medium. Analysis is reduced to
solving a nonlinear transmission eigenvalue problem for an
ordinary differential equation; eigenvalues of the problem
correspond to propagation constants of the waveguide. For
the numerical solution, a method is proposed based on solv-
ing an auxiliary Cauchy problem (a version of the shooting
method). As a result of comprehensive numerical model-
ing, new propagation regimes are discovered.

1 Introduction

Analysis of wave propagation in an open metal–dielectric
waveguides constitutes an important class of vector elec-
tromagnetic problems. A conducting cylinder covered by
a concentric dielectric layer, the Goubau line (GL) shown
in Fig. 1 is the simplest type of such guiding structures.
A complete mathematical investigation of the spectrum of
symmetric surface modes in a GL is performed in [1]. Pa-
pers [2, 3] develop the theory of wave propagation in lay-
ered nonlinear dielectric waveguides. However, there are
virtually no results concerning the analysis of wave prop-
agation in a GL with an external concentric layer having
nonlinear metamaterial permittivity. We aim this study to
fill this gap and consider the problem of electromagnetic TE
(transverse-electric) wave propagation in a GL with nonlin-
ear metamaterial permittivity of the dielectric medium fill-
ing the GL layer. We consider only the intensity-dependent
permittivity. The determination of TE waves is reduced to
a nonlinear transmission eigenvalue problem for Maxwell’s
equations, which is then reduced to a system of nonlinear
ordinary differential equations.

2 Statement of the problem

Let us consider three dimensional space R3 with cylindri-
cal coordinate system Oρϕz. The space is filled with an
isotropic medium of dielectric permittivity ε2

c ε0 = const,
where ε0 is the permittivity of free space, without sources.
The medium is assumed to be isotropic and nonmagnetic.
A GL with a cross-section

Σ := {(ρ,ϕ,z) : a 6 ρ 6 b,0 6 ϕ < 2π}

with a generating line parallel to the axis Oz is placed in
R3. It is supposed that everywhere µ = µ0, where µ0 is the
permeability of free space.

The geometry of the problem is shown in Fig. 1. The
waveguide is unlimitedly continued in z direction.

Figure 1. Geometry of the problem. The cross section of
the waveguide, which is perpendicular to its axis, consists
of two concentric circles of radii a and b: a is the radii of
the internal (perfectly conducting) cylinder, and b−a is the
thickness of external (dielectric) cylindrical shell.

Let E and H be complex amplitudes of an electromagnetic
field. The complex amplitudes E, H satisfy Maxwell’s
equations {

rotH =−iωεE,
rotE = iωµH,

(1)

have continuous tangential field components on the media
interface ρ = a, ρ = b and obey the radiation condition at
infinity; i.e., the electromagnetic field decays exponentially
as ρ → ∞ in the region ρ > b; ω is the circular frequency.

Let us consider TE-polarized waves in the harmonic mode
(see [4]),

Ee−iωt = e−iωt(0,Eϕ ,0)T , He−iωt = e−iωt(Hρ ,0,Hz)
T ,

where E,H are complex amplitudes and

Eϕ = Eϕ(ρ)eiγz, Hρ = Hρ(ρ)eiγz, Hz = Hz(ρ)eiγz, (2)

where γ is unknown spectral parameter.

Let k2
0 := ω2µε0. Thus, substituting components (2) into

(1) and using the notation u(ρ;γ) := Eϕ(ρ) we obtain(
ρ
−1 (ρu)′

)′
+
(
k2

0 ε̃− γ
2)u = 0, (3)



where ε̃ = ε
−1
0 ε , and ε̃ is defined by formula ε = ε̃ε0, where

ε̃ =

{
−ε2

m + α̃u2, a 6 ρ 6 b,
ε2

c , ρ > b,
(4)

and ε2
m, ε2

c and α̃ are real constants.

We assume that function u is sufficiently smooth

u(ρ) ∈C1 [a,+∞ )∩C2(a,b)∩C2(b,+∞).

Let κ2 := γ2−k2
0ε2

c . In the domain ρ > b equation (3) takes
the form

u′′+ρ
−1u′−ρ

−2u−κ
2u = 0. (5)

In the domain a 6 ρ 6 b equation (3) takes the form

u′′+ρ
−1u′−ρ

−2u− k2u =−αu3, (6)

where α := k2
0α̃ , k2 := k2

0ε2
m + γ2.

The necessary solutions to equation (5) must be written in
the following form

u =CK1(κρ), ρ > b. (7)

The function K1 are the modified Bessel functions and C
is constant. The radiation conditions are satisfied because
K1(kcρ)→ 0 exponentially as ρ → ∞ (see [5]).

Transmission conditions for the functions u and u′ result
from the continuity conditions for the tangential field com-
ponents and have the form

[u]|
ρ=b = 0, [u′]

∣∣
ρ=b = 0, (8)

where [v]|
ρ=s = lim

ρ→s−0
v(ρ)− lim

ρ→s+0
v(ρ) is the jump in the

limit values of the function at a point s.

We suppose what electric field E on the boundary ρ = a is
defined as follows:

u(a) = 0, (9)

u′(a) = C̃. (10)

Let us formulate the transmission eigenvalue problem
(problem P) to which the problem of surface waves prop-
agating in a GL has been reduced. The goal is to find
quantities γ such that, for given C 6= 0 (or C̃ 6= 0), there
is a nonzero function u(ρ;γ) that is defined by formula (7)
ρ > b and solves equation (6) for a < ρ < b; moreover, the
function u(ρ;γ) thus defined satisfies transmission condi-
tions (8) for ρ ∈ [a,+∞].

The quantities solving problem P are called eigenvalues,
and the corresponding functions u(ρ;γ) are called eigen-
functions.

3 Numerical method

The method under consideration makes it possible to find
(normalized) propagation constant γ . Consider the Cauchy
problem for the system of equations

u′′+ρ
−1u′−ρ

−2u− k2u =−αu3,

with the following initial conditions

u(a) = 0, u′(a) = C̃. (11)

To justify the solution technique, we use classical results
of the theory of ordinary differential equations concerning
the existence and uniqueness of the solution to the Cauchy
problem and continuous dependence of the solution on pa-
rameters.

Using the transmission condition on the boundary b we ob-
tain the following dispersion equation

∆
(
γ, u,u′

)
:= κu(b)K′1(κb)−u′(b)K1(κb), (12)

where quantities u(b) and u′ (b) are obtained from the so-
lution to the Cauchy problem.

4 Numerical results

We solve numerically the auxiliary Cauchy problem (see
[6, 7, 8]) and determine and plot the normalized eigenvalues
with respect to the circular frequency.

The following values of parameters are used for calcula-
tions: a = 2, b = 4, ε2

c = 1, C̃ = 100,α = 0.01.

Figures 2-4 display the plots of γ(ω) for different values of
nonlinearity coefficient α and permittivity εm are plotted.
We call the dependence γ(ω) the dispersion curve (DC).

Figure 2. DCs for nonlinear TE waves. The following val-
ues of parameters are used for calculations: ε2

m =−1.



Figure 3. DCs for nonlinear TE waves. The following val-
ues of parameters are used for calculations: ε2

m =−4.

Figure 4. DCs for nonlinear TE waves. The following val-
ues of parameters are used for calculations: ε2

m =−9.

5 Conclusion

The use of the proposed version of the shooting method
may be justified for the analysis of nonlinear metamate-
rial waveguide. For such problems an explicit dispersion
equation is not available and numerical investigation of the
eigenvalue spectrum can be carried out only by a specific
method developed in this paper.

And finally, we determined numerically nonlinear TE
waves propagating in a nonlinear metamaterial waveguide
and discovered ’new’ eigenvalues that are not perturbations
of eigenvalues of the linear problem. These eigenvalues
correspond to a new (purely nonlinear) propagation regime.
Whether these mathematically predicted purely nonlinear
waves really exist, is a hypothesis that can be proved or dis-
proved in physical experiment.

The proposed numerical method enables finding all eigen-
values and proves to be efficient in the case of discrete
eigenvalues.
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