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Abstract

In this work, we investigate small-scale fading observed in
a singe-input-multiple-output indoor communication chan-
nel. We propose a framework to define the stationarity
period and then we analyze the variations of small-scale
fading statistics using the so-called second-order scattering
fading (SOSF): (i) minimum stationarity period is 0.8 s, ii)
the parameters of the SOSF distribution turn out to be fol-
lowing a Beta or an Extreme Value distribution, (iii) for de-
scribing the sudden changes of the statistics, we extracted
probability and transition matrices, iv) angles of arrival can
be described by a bi-modal Tikhonov-Von Mises distribu-
tion.

1 Introduction

A recently published white paper [1] reports that, in 2016,
the monthly mobile traffic was 7.2 Exabytes and Cisco fore-
casts 49 Exabytes per month of mobile data traffic by 2021.
Indoor environments are in the focus of multiple research in
channel characterization and modeling. Moreover, the fre-
quency band of 3.4-4.2 GHz is one of the first bands consid-
ered for the 5th generation (5G) communication networks.
In [2], peer-to-peer channels were investigated in a typi-
cal US office environment, consisting in a large indoor area
containing individual cubicle-style offices. A Single-Input
Single-Output (SISO) channel for a typical European envi-
ronment was characterized in [3]. However, Multiple-Input
Multiple-Output (MIMO) properties of a non-stationary ra-
dio channel are of interest for the research and engineer-
ing community. In this paper, we investigate narrowband
Single-Input Multiple-Output (SIMO) Small-Scale Fading
(SS fading) based on a wideband experimental campaign at
3.8 GHz in a typical office environment.

2 Measurements

2.1 Environment

The channel measurement campaign was carried out at the
Université catholique de Louvain (UCL), Belgium, in win-
ter 2016. The investigated environment was consisted of
typical offices along a corridor separated by brick or plaster-
board walls, as shown in Figure 1. Distances between the
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Figure 1. Floor-plan of peer-to-peer measurements

nodes were 21,11,4,8,7.5,11,15 m. First, the receiver
(Rx) (additionally marked with a cross) was located in a
room in the middle of the building. The mobile transmitter
(Tx) was successively positioned in different rooms along
the corridor. For this measurements, the transmitter was
moving in arbitrary directions with the speed v ≈ 1 m/s
only over an area of (∼ 1 m2). Second, the same measure-
ments were repeated for the case when the mobile Tx was
in the room marked with a cross and static Rx was sequen-
tially positioned in different rooms. In total, fourteen SIMO
channels were measured.

2.2 Equipment

The measurements were carried out at 3.8 GHz over an ef-
fective bandwith of 120 MHz by means of UCL/ULB Elek-
trobit PROPSound™ channel sounder. A Uniform Cir-
cular Antenna (UCA) and a custom-made dipole (gain of
1.75 dB) antennas were used at the Rx and Tx, respec-
tively. The RF cables had excellent RF stability, even when
they were slightly bent or moved during the measurements.
The channel transfer function (obtained from the impulse
response) is denoted by H[t, f ,m], where t denotes the time
index, f denotes the frequency index, and m denotes the
link index (one link joining a Tx-Rx pair). Initialization
and Search Improved SAGE (ISIS) algorithm presented [4]



was used to estimate directional properties of the measured
SIMO channels.

2.3 Concepts of Data Analysis

Similarly to [3, 2, 5], the average received power is defined
as

P̄ =
1

TsFM

M

∑
m=1

Ts

∑
t=1

F

∑
f=1
|H[t, f ,m]|2, (1)

where t, f and m denote time sample, frequency tone and
link nimber, respectively.

Using a sliding time window length Tav of 1.6 s (cor-
responding to 20 wavelengths) to define the time-variant
channel components, the time-variant average power of a
narrowband channel (for each frequency bin with band-
width equal Fcoh,min = 1/τmax = 4 MHz) can be written as

P[t] =
1

TavM

t+Tav/2

∑
t ′=t−Tav/2

M

∑
m=1
|H[t ′,m]|2 (2)

The narrowband small-scale fading G is then given by (g =
|G| being the amplitude):

G[t] =
H[t]√

P[t]
. (3)

3 Experimental Characterization of Station-
arity Period

3.1 Calculation of Correlation Matrices

Since SIMO channels were measured, we will concentrate
our analysis on the Rx spatial correlation matrices. First,
we define the minimum stationarity region. Based on the
maximum observed delay spread of τmax =∼ 250 ns, the
coherence bandwidth is estimated to be Fcoh,min = 1/τmax =
4 MHz (n f .coh = 10 frequency chips), therefore, within
120 MHz, there are only 30 independent frequency real-
izations, which means that effectively a smaller number of
independent samples is available. Since the Rx and the
scatterers are fixed, we obtain a maximal Doppler shift
fmax = 12.7Hz. This results in a minimal coherence time
Tcoh,min = 1/ fmax = 7.9 ms. It turns out that the detection
of stationarity regions for all measured channels is pos-
sible for the window of nt = 40 (approximately equiva-
lent to a traveled distance of 5λ ). Consequently, we ob-
tain estimates of the correlation matrices by averaging over
nt×n f = 12000 (5×30 non-coherent) realizations. Hence,
the time-variant correlation matrix RRx(t) can be calculated
as

RRx(t) =
GGH

nt ·n f
, (4)
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Figure 2. Correlation Matrix Distance for 10 seconds of
measured channel Tx-Rx6, squared definition of stationar-
ity periods

where G is a data matrix with dimensions of nantennas ×
(nt ·n f ), where each column corresponds to the used time-
frequency data block. These time-variant matrices are used
for estimation of stationarity periods of the measured chan-
nels.

3.2 Calculation and Analysis of CMD

The Correlation Matrix Distance (CMD) was introduced
[6, 7, 8] as a metric for the characterization of the change
between two arbitrary spatial correlation matrices. Let us
consider two spacial correlation matrices R and R̂, then the
correlation matrix distance between the matrices can be ex-
pressed as

dcorr = 1− tr{RR̂}
‖R‖F‖R̂‖F

, (5)

where tr{·} and ‖ · ‖F are the trace operator and the Frobe-
nius norm, respectively. The CMD ranges between zero
when the compared spatial correlation matrices are iden-
tical (up to a scaling factor) and one when they are com-
pletely different (i.e. uncorrelated). Hence, the correla-
tion matrix distance between RRx(ti) and RRx(t j) can be
used as a measure of non-stationarity, where RRx(ti, j) are
the correlation matrices calculated with (4) for time instants
i, j = 1 . . .Ts−nt . A channel is considered to be stationary
over a region (a traveled distance, time period, frequency
range etc.) if the CMD is bellow the 0.2 threshold. In
Figure 2 these time periods are indicated by red squares
of sizes nst.per × nst.per. Note, that the minimum duration
of stationarity period equals nst.per = 80 samples = 0.8 s
(equivalent to the traveled distance of∼ 10λ ). Next, blocks
of nst.per × n f .coh × nantennas can be used to extract time-
variant statistics of narrowband Second Order Scattering
Fading (SOSF) SIMO channels.
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Figure 3. Typical variation of small-scale fading parame-
ters over time for Tx1-Rx

Figure 4. Probability density functions of the SOSF distri-
bution parameters

4 Experimental Characterization of Non-
Stationary Fading Statistics

4.1 SOSF Parameters Extracted From Mea-
surement

Analogously to [3], SS fading over time can be described
by a single distribution including a weighted combination
of a Line-of-Sight (LOS) component, a Rayleigh fading
component and a Double Rayleigh (DR) fading component.
The probability density function of this kind of SS fading
is given, as shown in [2, 3, 9], by the so-called SOSF dis-
tribution. This distribution can be described by only two
parameters [10] α and β characterizing the impact of the
DR and LOS components, respectively. By iteratively fit-
ting the SOSF probability density function to the experi-
mental fading distributions (assuming a moment-based es-
timate as starting point [10]) temporal behavior of the pa-
rameters are estimated (see Figure 3). We observe that
predominantly Rayleigh - Double Rayleigh (RDR) fading
(β = 0,0 < α < 1) occurs as in [3]. Only scarcely we ob-
serve an impact of LOS (Rice and Double Rayleigh and
Line-of-Sight (DRLOS)).

In Figure 4, three main groups (Rice, Rayleigh, Rayleigh-

Table 1. Evaluated parameters of the SOSF distribution

Subset Distribution Parameters τ

Rician K ∼ pev(−3.1,3),α = 0 τK = 0.8s
RDR α ∼ pβ (3,4.2),β = 0 τα = 2.4s
Rayleigh − −

Table 2. Probability and Transition matrices

Subset Probability Rician RDR Rayleigh
Rician 0.12 0.19 0.10 0.12
RDR 0.83 0.75 0.85 0.81
Rayleigh 0.05 0.06 0.05 0.07

Double Rayleigh) can be observed. These subsets of SOSF
describe the major part of measured SS fading realizations.
For reasons of simplicity, we neglect DRLOS and points in
the middle zone (where 0 < α < 1,0 < β < 1 and α +β 6=
1). The distribution of the parameter α for the RDR subset
is found to be well approximated by the Beta distribution.
The distribution of the K-Factor in Rician fading, K = β

1−β
,

can be modeled by Extreme Value distribution, when the
K-factor expressed in decibels.

Eventually, a probability distribution of the SOSF parame-
ters within the subset can be estimated (see Table 1). Note
that the autocorrelations of α and K are decreasing expo-
nential functions with the decay times τK,α , respectively.
Table 2 presents the probabilities of the subsets and proba-
bility of the transitions between different kinds of SS fad-
ing. Note, that i) a high probability of occurrence for
RDR fading is observed as in [3], ii) β can be obtained as
β = K

1+K .

4.2 Directional Statistics

Figure 5 shows Angle of Arrival (AoA) extracted from the
measurements. Two situations can be differentiated: when
the nodes are on the same and opposite sides of the corri-
dor. When the corridor is a part of the propagation chan-
nel, the major part of waves arrives over a smaller angular
range. Usually, the direction of arriving waves corresponds
to a corner of the room where the Rx is located. In the
case when the nodes are located in the rooms on the same
side of the corridor, AoA are dispersed over a larger range,
mostly concentrated in the direction of the Tx. Moreover,
a noticeable impact of the backscattering is observed. The
distribution of measured AoAs can be approximated by a
mixture of Tikhonov-von Mises (TvM) distributions:

pT vM(x,w,κ1,κ2) = w · e
(κ1 cos(x))

2πI0(κ1)
+(1−w) · e

(κ2 cos(x−π))

2πI0(κ2)
,

(6)
where I0 is the modified Bessel function of order 0, κ and
µ are measures of concentration and location, respectively.
Weights w and (1−w) describe the impacts of components.
Let us separate analysis and modeling of two different situ-
ations mentioned above.



  0.005

  0.01

  0.015

30

210

60

240

90

270

120

300

150

330

180 0

Tx5−Rx

DoorRoom’s

corner

Tx

  0.002

  0.004

  0.006

30

210

60

240

90

270

120

300

150

330

180 0

Tx6−Rx

Door

Tx

  0.002

  0.004

  0.006

  0.008

  0.01

30

210

60

240

90

270

120

300

150

330

180 0

Tx−Rx5

Tx

Door

  0.002

  0.004

  0.006

  0.008

30

210

60

240

90

270

120

300

150

330

180 0

Tx−Rx6

Tx

Door

Figure 5. Angular Power Spectrum Top: Rx is in the same
room, bottom: Rx is in different rooms

Table 3. Evaluated parameters of angular distributions

Parameter Same side Different sides
κ1 pΓ(16.1,0.13) pΓ(7,0.7)
κ2 pΓ(20.8,0.11) pΓ(7,0.17)
w pβ (23,13.6) pβ (8.8,14.8)
cκ1,κ2 −0.28 −0.54
cκ1,w −0.78 −0.84
cκ2,w 0.37 0.66

In Figure 5 (Rx (Tx) 5) we can see a peak pointing towards
the transmitter. The peak can be modeled as a Tikhonov-
von Mises distribution with a large parameter κ1 and the
mean direction µ1. Up to seven small peaks can be detected
in the measurements, but modeling of all these components
is not practical. For sake of simplicity, the distribution of
AoA excluding the main peak can be approximated by sin-
gle TvM distribution with a small parameter κ2. The mean
angle of this component has low impact because the distri-
bution is close to uniform when κ2 is small. In the case of
the same-side rooms, again main peaks pointing towards
the transmitter are seen in Figure 5 (Rx (Tx) 6). How-
ever, the peak is wider and its impact is just slightly big-
ger than the one of backscattering. Hence, the final distri-
bution can be approximated by two TvM distributions with
parameters κ1 and κ2 and |µ1−µ2|= π . To estimate the pa-
rameters κ1,κ2, we assume that the angle corresponding to
the maximum of AoA distribution is the direction of LOS
and shifted to 0. Consequently, µ1 = 0 and, considering
the reasoning above, we can set µ2 = π . Next, we per-
formed least squares fitting of the measured distributions
and the Kolmogorov-Smirnov test with 95 % confidence
interval was used to check whether the LS estimation gives
an appropriate result. It turns out that κ1,2 follow Gamma
distributions and some correlation between the parameters
was found. Parameter w is Beta-distributed. The temporal
autocorrelation of the parameters κ1,κ2,w is a decreasing
exponential function with the decay time of 2.4 s (≈ 3 sta-
tionarity periods). The evaluated parameters are listed in

Table 3.

5 Conclusions

This paper has presented an analysis of time-variant statis-
tics of a peer-to-peer SIMO channels based on measure-
ment in an indoor office environment at 3.8 GHz: i) Anal-
ysis of measured Rx spatial correlation matrices shows that
the minimum stationarity period equals 0.8 s, ii) Distri-
bution of angles of arrival can be described by a bimodal
Tikhonov-von Mises distribution with time-variant param-
eters Gamma (κ1,κ2) and Beta (w) distributed, iii) Distri-
butions of the parameter α can be modeled by Beta distri-
bution, iv) Distribution of the K-Factor can be well approx-
imated by Extreme Value distribution.
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